Skip to main content
Log in

Influence of Bacillus subtilis and Pseudomonas aeruginosa BSW and Clinoptilolite Addition on the Biowaste Composting Process

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work aimed the influence of inoculation of Pseudomonas aeruginosa BSW, Bacillus subtilis and zeolite on a biowaste composting process. The composting process of biowaste was conducted without (experiment P1) and with (experiment P2) inoculation of selected bacteria and zeolite. The addition of 4% of zeolite into biowaste displayed the retention of ammonium in composting material. In experiment P2, the emission of ammonia (147 mg \(\text {kg}_{\mathrm{VM}}^{-1})\) was about four times less than in experiment P1 (509 mg \(\text {kg}_{\mathrm{VM}}^{-1})\). The concentration of \(\text {NH}_{4}^{+}\) ions in composting material and in condensate in P1 was 924 mg \(\text {dm}^{-3 }\)and 6588 mg \(\text {dm}^{-3}\) and in P2 9 mg \(\text {dm}^{-3 }\) and 91 mg \(\text {dm}^{-3}\), respectively.\(^{.}\)The volume of produced leachate and the concentration of \(\text {NH}_{4}^{+}\) ions in leachate in P1 was 150 \(\hbox {cm}^{3}\) and 1266 mg \(\text {dm}^{-3 }\) and in P2 75 \(\hbox {cm}^{3}\) and 9 mg \(\text {dm}^{-3}\), respectively. Toxicity Impact Index (TII50) of leachate in P1 and in P2 was 90.1 and 5.4, respectively, which indicated that P1 was extremely toxic leachate. The obtained conversion of composting material in P1 and P2 was 64% and 71%, respectively, which shows that inoculated bacteria accelerated biodegradation process. Degradation of biowaste during composting was described as first-order process, and kinetic parameter \(k_{0}\) and reaction enthalpy were estimated for P1 and P2 [\(k_{0}\) (P1 and P2) \(= 0.021\pm \) 0.001 d\(^{-1}\), \(\Delta H_\mathrm{r}\) (P1 and P2) = 2660 ± 26 kJ \(\text {kg}_{\mathrm{vs}}^{-1}\)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Himanen, M.; Hänninen, K.: Composting of bio-waste, aerobic and anaerobic sludges—effect of feedstock on the process and quality of compost. Bioresour. Technol. (2011). https://doi.org/10.1016/j.biortech.2010.059

    Google Scholar 

  2. Hu, Z.; Lane, R.; Wen, Z.: Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system. Waste Manag. (2008). https://doi.org/10.1016/j.wasman.2008.02.016

    Google Scholar 

  3. Kučić, D.; Briški, F.: Emission of gases during composting of solid waste. KUI (2017). https://doi.org/10.15255/KUI.2016.050

    Google Scholar 

  4. Zhang, L.; Sun, X.: Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manag. (2015). https://doi.org/10.1016/j.wasman.2015.02.037

    Google Scholar 

  5. Kučić, D.; Kopčić, N.; Briški, F.: Zeolite and potting soil sorption of \(\text{ CO }_{2}\) and \(\text{ NH }_{3}\) evolved during co-composting of grape and tobacco waste. Chem Pap. (2013). https://doi.org/10.2478/s11696-013-0322-z

    Google Scholar 

  6. Roy, D.; Azaïs, A.; Benkaraache, S.; Drogui, P.; Tyagi, R.D.: Composting leachate: characterization, treatment, and future perspectives. Rev. Environ. Sci. Biotechnol. (2018). https://doi.org/10.1007/s11157-018-9462-5

    Google Scholar 

  7. Wang, S.B.; Peng, Y.L.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. (2010). https://doi.org/10.1016/j.cej.2009.10.029

    Google Scholar 

  8. Kurán, P.; Trögl, J.; Nováková, J.; Pilarová, V.; Dánová, P.; Pavlorková, J.; Kozler, J.; Novák, F.; Popelka, J.: Biodegradation of spilled diesel fuel in agricultural soil: effect of humates, zeolite, and bioaugmentation. Sci. World (2014). https://doi.org/10.1155/2014/642427

    Google Scholar 

  9. Wang, J.Z.; Hu, Z.Y.; Xu, X.K.; Jiang, X.; Zheng, B.H.; Liu, X.N.; Pan, X.B.; Kardol, P.: Emissions of ammonia and greenhouse gases during combined precomposting and vermicomposting of duck manure. Waste Manag. (2014). https://doi.org/10.1016/j.wasman.2014.04.010

    Google Scholar 

  10. Headstrom, A.: Ion exchange of ammonium in zeolites: a literature review. J. Environ. Eng. (2001). https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8

    Google Scholar 

  11. Herner, Ž.; Kučić, D.; Zelić, B.: Biodegradation of imidacloprid by composting process. Chem. Pap. (2017). https://doi.org/10.1007/s11696-016-0031-5

    Google Scholar 

  12. Haddadin, M.S.Y.; Haddadin, J.; Arabiyat, O.I.; Hattar, B.: Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour. Technol. (2009). https://doi.org/10.1016/j.biortech.2009.04.047

    Google Scholar 

  13. Zeng, G.; Yu, M.; Chen, Y.; Huang, D.; Zhang, J.; Huang, H.; Jiang, R.; Yu, Z.: Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural composting. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2009.08.013

    Google Scholar 

  14. Nduka, B.A.; Oduwaye, O.F.; Adewale, D.B.: Potential of Streptomyces sp. and Trichoderma sp. as compost microbiota for coffee husk. Afr. J. Biotechnol. (2017). https://doi.org/10.5897/AJMR2017.8476

    Google Scholar 

  15. Diallo, N.D.D.; Bengue, M.M.; Guer, M.N.; Ka, M.; Tine, E.; Mbaye, C.T.: Composting of sugar cane bagasse by Bacillus strains. Afr. J. Biotechnol. (2017). https://doi.org/10.5897/AJB2015.14998

    Google Scholar 

  16. Gibello, A.; Vela, A.I.; Martín, M.; Mengs, G.; Alonso, P.Z.; Garbi, C.; Fernández-Garayzábal, J.F.: Pseudomonas composti sp. nov., isolated from compost samples. Int. J. Syst. Evol. Microbiol. (2011). https://doi.org/10.1099/ijs.0.027086-0

    Google Scholar 

  17. Prescott, L.M.; Harley, J.P.; Klein, D.A.: Microbiology, 3rd edn. WCB Publishers, Chichester (1996)

    Google Scholar 

  18. Bergey, D.H.; Holt, J.G.: Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins, Baltimore (1994)

    Google Scholar 

  19. Austrian Standards Institute: Austrian Standard: Analytical Methods and Quality Control for Waste Compost. ÖNORM S 2023, Vienna, Austria (1986)

  20. APHA: Standard Methods for the Examination of Water and Wastewater, 16th edn. American Public Health Association, Washington (1985)

  21. EN ISO 11348-3: Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of the Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization, Switzerland

  22. Briški, F.; Kopčić, N.; Ćosić, I.; Kučić, D.; Vuković, M.: Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem. Pap. (2012). https://doi.org/10.2478/s11696-012-0234-3

    Google Scholar 

  23. Kolthoff, I.M.; Sandel, E.B.: Inorganic Quantitative Analysis, pp. 347–352. Školska Knjiga, Zagreb (1951) (in Croatian)

  24. Rodrigues, C.C.; Moraes Jr., D.; Nobrega, S.W.; Barboza, M.G.: Ammonia adsorption on fixed bed of activated carbon. Bioresour. Technol. (2007). https://doi.org/10.1016/j.biortech.2006.03.024

    Google Scholar 

  25. Mason, I.G.: Mathematical modelling of the composting process: a review. Waste Manag. (2006). https://doi.org/10.1016/j.wasman.2005.01.021

    Google Scholar 

  26. Briški, F.; Horgas, N.; Vuković, M.; Gomzi, Z.: Aerobic composting of tobacco industry solid waste—simulation of the process. Clean Technol. Environ. (2003). https://doi.org/10.1007/s10098-003-0218-7

    Google Scholar 

  27. Haug, T.: The Practical Handbook of Composting Engineering, Chap. 9, pp. 326–327. Lewis Publishers, Boca Raton (1993)

    Google Scholar 

  28. Xiong, Z.-Q.; Wang, G.-X.; Huo, Z.-C.; Yan, L.; Gao, Y.-M.; Wang, Y.-J.; Gu, J.-D.; Wang, W.-D.: Effect of aeration rates on the composting processes and Nitrogen loss during composting. Appl. Environ. Biotechnol. (2017). https://doi.org/10.26789/AEB.2017.01.003

    Google Scholar 

  29. Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y.: Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of the compost. Bioresour. Technol. (2012). https://doi.org/10.1016/j.biortech.2012.02.099

    Google Scholar 

  30. Rasapoor, M.; Nasrabadi, T.; Kamali, M.; Hoveidi, H.: The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manag. (2009). https://doi.org/10.1016/j.wasman.2008.04.012

    Google Scholar 

  31. Plachá, D.; Raclavská, H.; Kučerová, M.; Kuchařová, J.: Volatile fatty acid evolution in biomass mixture composts prepared in open and closed bioreactors. Waste Manag. (2013). https://doi.org/10.1016/j.wasman.2013.01.021

    Google Scholar 

  32. Zhao, Y.; Zhang, Z.; Wei, Y.; Wang, H.; Lu, Q.; Li, Y.; Wei, Z.: Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Manag. (2017). https://doi.org/10.1016/j.wasman.2017.06.022

    Google Scholar 

  33. Kopčić, N.; Vuković Domanovac, M.; Kučić, D.; Briški, F.: Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste. Waste Manag. (2014). https://doi.org/10.1016/j.wasman.2013.11.001

    Google Scholar 

  34. Malamis, D.; Bourka, A.; Stamatopoulou, E.; Moustakas, K.; Skiadi, O.; Loizidou, M.: Study and assessment of segregated biowaste composting: the case study of Attica municipalities. J. Environ. Manag. (2017). https://doi.org/10.1016/j.jenvman.2016.09.070

    Google Scholar 

  35. Chroni, C.; Kyriacou, A.; Georgaki, I.; Manios, T.; Kotsou, M.; Lasaridi, K.: Microbial characterization during composting of biowaste. Waste Manag. (2009). https://doi.org/10.1016/j.wasman.2008.12.012

    Google Scholar 

  36. Oviedo-Ocańa, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Torres-López, W.A.; Dominguez, I.; Komilis, D.; Sánchez, A.: A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: a case study in Columbia. Waste Manag. (2017). https://doi.org/10.1016/j.wasman.2017.02.010

    Google Scholar 

  37. Paillat, J.M.; Robin, P.; Hassouna, M.; Leterme, P.: Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ. (2005). https://doi.org/10.1016/j.atmosenv.2005.07.045

    Google Scholar 

  38. Oviedo-Ocańa, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.F.; Hoyos, L.V.; Gonzales, S.; Barrena, R.; Komilis, D.; Sánchez, A.: Stability and maturity of biowaste composts derived by small municipalities: correlation among physical, chemical and biological indices. Waste Manag. (2015). https://doi.org/10.1016/j.wasman.2015.07.034

    Google Scholar 

  39. Hanc, A.; Ochecova, P.; Vasak, F.: Changes of parameters during composting of bio-waste collected over four seasons. Environ. Technol. (2017). https://doi.org/10.1080/09593330.2016.1246611

    Google Scholar 

  40. Sanchez-Monedero, M.A.; Roig, A.; Paredes, C.; Bernal, M.P.: Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. (2001). https://doi.org/10.1016/S0960-8524(01)00031-1

    Google Scholar 

  41. Vuković, M.; Ćosić, I.; Kučić, D.; Kopčić, N.; Briški, F.: Biodegradation kinetics of tobacco-waste leachate by activated sludge in a sequencing batch reactor. CABEQ 26, 191–198 (2012)

    Google Scholar 

  42. Bakhshoodeh, R.; Alavi, N.; Majlesi, M.; Paydary, P.: Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol. Eng. (2017). https://doi.org/10.1016/j.ecoleng.2017.04.058

    Google Scholar 

  43. Awasthi, M.K.; Wang, Q.; Wang, M.; Chen, H.; Ren, X.; Zhao, J.; Zhang, Z.: In-vessel co-composting of food waste employing enriched bacterial consortium. Food. Tehnol. Biotechnol. (2017). https://doi.org/10.17113/ftb.56.01.18.5439

    Google Scholar 

  44. Petric, I.; Selimbašić, V.: Development and validation of mathematical model for aerobic composting process. Chem. Eng. J. (2008). https://doi.org/10.1016/j.cej.2007.08.017

    Google Scholar 

  45. Ćosić, I.; Vuković, M.; Gomzi, Z.; Briški, F.: Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste. Chem. Pap. (2013). https://doi.org/10.2478/s11696-012-0287-3

    Google Scholar 

  46. Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S.: Composting in small laboratory pilots: performance and reproducibility. Waste Manag. (2012). https://doi.org/10.1016/j.wasman.2011.09.011

    Google Scholar 

  47. Kopčić, N.; Vuković Domanovac, M.; Đaković, Z.; Briški, F.: Composting of tobacco dust in different types of reactors. Cabeq 27, 57–64 (2013)

    Google Scholar 

  48. Herner, Ž.; Bažok, R.; Briški, F.: Biodegradation of imidacloprid in an open composting pile. J. Food Agric. Environ. 12, 198–202 (2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Croatian Science Foundation through project entitled Modelling of Environmental Aspects of Advanced Water Treatment for Degradation of Priority Pollutants (MEAoWT) (IP-09-2014-7992) and Mineral Promet d.o.o., Croatia on donation of natural zeolite clioptilolite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana K. Grgić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grgić, D.K., Domanovac, M.V., Domanovac, T. et al. Influence of Bacillus subtilis and Pseudomonas aeruginosa BSW and Clinoptilolite Addition on the Biowaste Composting Process. Arab J Sci Eng 44, 5399–5409 (2019). https://doi.org/10.1007/s13369-018-03692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-03692-8

Keywords

Navigation