Skip to main content
Log in

An Artificial Bee Colony Algorithm Based on Dynamic Penalty and Lévy Flight for Constrained Optimization Problems

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Artificial bee colony (ABC) algorithm is one of the most popular intelligence algorithms, which has been widely applied to some unconstrained optimization problems. Many improved versions of ABC algorithm are also used for solving constrained optimization problems (COPs). An artificial bee colony algorithm based on dynamic penalty function and Lévy flight (DPLABC) is presented for COPs in this paper. Based on the original ABC algorithm, four modifications are put forward in this newly proposed algorithm: The dynamic penalty method is used to handle the constraints; Lévy flight with logistic map is applied in the employed bee phase; according to the selection probability, a further search mechanism which is learned from the best solution and two other neighbor food sources is adopted for onlooker bees; different from pulling back to the upper and lower limits, the new boundary handling mechanism inspired by the best solution is also given to repair the invalid solutions. To validate the performance of DPLABC algorithm, it is tested on 13 constrained benchmark functions from 2006 IEEE Congress on Evolution Computation (CEC2006) and four engineering design problems. The experimental results indicate that DPLABC is competitive with the state-of-the-art algorithms including dynamic difference search algorithm and several improved variants of ABC for solving COPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hajela, P.; Lee, J.: Constrained genetic search via schema adaption: an immune network solution. Struct. Optim. 12(1), 11–15 (1996)

    Article  Google Scholar 

  2. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  3. Liu, J.; Teo, K.L.; Wang, X.; Wu, C.: An exact penalty function-based differential search algorithm for constrained global optimization. Soft. Comput. 20(4), 1305–1313 (2016)

    Article  Google Scholar 

  4. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Method Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  5. Hu. X.; Eberhart, R.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, pp. 203–206 (2002)

  6. Huang, V.L.; Qin, A.K.; Suganthan, P.N.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: 2006 IEEE Congress on Evolutionary Computation, Canada, pp. 17–24 (2006)

  7. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.: Mix variable structural optimization using firefly algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011)

    Article  Google Scholar 

  8. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Eriyes University, Engineering Faculty, Computer Engineering Department (2005)

  9. Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Karaboga, D.; Gorkemi, B.; Ozturk, C.; Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  11. Yeh, W.C.; Hsieh, T.J.: Solving reliability redundancy allocation problems using an artificial bee colony algorithm. J. Hydrol. 38(11), 1465–1473 (2011)

    MathSciNet  Google Scholar 

  12. Brajevic, I.; Tuba, M.; Subotic, M.: Performance of the improved artificial bee colony algorithm on standard engineering constrained problems. Int. J. Math. Comput. Simul. 5(2), 135–143 (2011)

    Google Scholar 

  13. Karaboga, D.; Akay, B.: PID controller design by using artificial bee colony, harmony search and bees algorithms. Proceedings of the institution of mechanical engineers, part I. J. Syst. Control. Eng. 224(17), 869–883 (2010)

    Google Scholar 

  14. Kran, M.S.; Iscan, H.; Gündüz, M.: The analysis of discrete artificial bee colony algorithm with neighbour operator on traveling salesman problem. Neural. Comput. Appl. 23(1), 9–21 (2013)

    Article  Google Scholar 

  15. Kashan, M.H.; Nahavandi, N.; Kashan, A.H.: Disable: the new artificial bee colony algorithm for binary optimization. Appl. Soft. Comput. 12(1), 342–352 (2012)

    Article  Google Scholar 

  16. Kisi, O.; Ozkan, C.; Akay, B.: Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. J. Hydrol. 428–429, 94–103 (2012)

    Article  Google Scholar 

  17. Liu, Y.F.; Liu, S.Y.: A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem. Appl. Soft. Comput. 13(3), 1459–1463 (2013)

    Article  Google Scholar 

  18. Karaboga, D.; Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: LNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, vol. 4529, pp. 789–798 (2007).

  19. Mezura-Montes, E.; Coello Coello, C.A.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput. 1(4), 173–194 (2011)

    Article  Google Scholar 

  20. Liang, Y.S.; Wan, Z.P.; Fang, D.B.: An improved artificial bee colony algorithm for solving constrained optimization problems. Int. J. Mach. Learn. Cybern. 1, 1–16 (2015)

    Google Scholar 

  21. Liang, J.J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Colleo Colleo, C.A.; Deb, K.: Problem definitions and evaluation criteria for CEC2006. Special session on constrained real-parameter optimization. Technical report, Nanyang Technological University, Singapore. Inf. Sci. 258, 80–93 (2006)

    Google Scholar 

  22. Mezura-Montes, E.; Cetina-Dominguez, O.: Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput. 218(22), 10943–10973 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Brajevic, I.: Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural. Comput. Appl. 26(7), 1587–1601 (2015)

    Article  Google Scholar 

  24. Li, X.; Yin, M.: Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural. Comput. Appl. 24(3–4), 723–734 (2014)

    Article  Google Scholar 

  25. Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft. Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  26. Akay, B.; Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  27. Akay, B.; Karaboga, D.: Artificial bee colony algorithm variants on constrained optimization. Int. J. Optim. Control Theor. Appl. (IJOCTA) 7(1), 98–111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karaboga, D.; Akay, B.: A modified artificial bee colony (ABC) optimization algorithm for constrained optimization problems. Appl. Soft. Comput. 11(3), 3021–3031 (2011)

    Article  Google Scholar 

  29. Zhu, G.; Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217, 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Karaboga, D.; Gorkemli, B.: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl. Soft. Comput. 23(5), 227–238 (2014)

    Article  Google Scholar 

  31. Hu, Y.; Cheung, Y.M.; Wang, Y.: A ranking-based evolutionary algorithm for constrained optimization problems. In: Proceedings of the Third International Conference on Natural Computation, USA, 4, pp. 198–202 (2007)

  32. Xiao, J.; Xu, J.; Shao, Z.; Jiang, C.; Pan, L.: A genetic algorithm for solving multi-constrained function optimization problems based on KS function. In: 2007 IEEE Congress on Evolutionary Computation, (CEC’2007), IEEE Press, Singapore, pp. 4497–4501(2007)

  33. Farmani, R.; Wright, J.A.: Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)

    Article  Google Scholar 

  34. Tessema, B.; Yen, G.G.: An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man. Cybern. Syst. Hum. 39(3), 565–578 (2009)

    Article  Google Scholar 

  35. Tasgetiren, M.F.; Suganthan,P.N.: A multi-populated differential evolution algorithm for solving constrained optimization problem. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), IEEE, Vancouver, BC, Canada, pp. 340–354 (2006)

  36. Puzzi, S.; Carpinteri, A.: A double-multiplicative dynamic penalty approach for constrained evolutionary optimization. Struct. Multidiscip. Optim. 35(5), 431–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, X.S.; Deb, K.: Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing IEEE, pp. 210–214 (2009)

  38. Nieva, A.: On the statistical behavior of the orbits elements of the logistic equation \(4x(1-x)\). Rev. Mex. Fís. 35(2), 188–191 (1989)

    MathSciNet  MATH  Google Scholar 

  39. Liu, B.; Wang, L.; Jin, Y.H.; et al.: Improved particle swarm optimization combined with chaos. Chaos Solitions Fractals 25(5), 1261–1271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys. Rev. E. 49(5), 4677–4683 (1994)

    Article  Google Scholar 

  41. Brajevic, I.; Tuba, M.: An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J. Intell. Manuf. 24(4), 729–740 (2013)

    Article  Google Scholar 

  42. Mezura-Montes, E.; Coello Coello, C.A.: A simple multimembered evolution strategy to save constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

    Article  MATH  Google Scholar 

  43. Oz Zavala, A.E.; Aguirre, A.H.; et al.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: Conference on Genetic and Evolutionary Computation, pp. 282–289 (2005)

  44. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Bristol (2010)

    Google Scholar 

  45. Akay, B.; Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)

    Article  Google Scholar 

  46. He, Q.; Huang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186(2), 1407–1422 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Lynn, N.; Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm. Evol. Comput. 24, 11–24 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Sun, Y., Wang, Gg. et al. An Artificial Bee Colony Algorithm Based on Dynamic Penalty and Lévy Flight for Constrained Optimization Problems. Arab J Sci Eng 43, 7189–7208 (2018). https://doi.org/10.1007/s13369-017-3049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3049-2

Keywords

Navigation