Skip to main content
Log in

DC Fault Protection Strategy for Medium Voltage Integrated Power System: Development and Assessment

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In medium voltage direct current (MVDC)-based power distribution scheme DC faults can cause instant disruption in service continuity to various connected loads. Many integrated power systems (IPS) found MVDC as a better replacement of MVAC for detection, isolation as well as protection against DC faults. DC fault protection strategy for developed MVDC-IPS system (which is accompanied by LVDC subsystem), is proposed here by introducing a modified series Z-source breaker circuitry which minimize fault or transient current that reflects back at the DC source by keeping its common ground return path and to re-energize the DC load after fault clearance. The versatility of the proposed idea also include to energize the loads after the fault clearance. The main problem is that a large value of fault/transient current 0 that reflects back at the source and SCR (when it stops commutation). This large reflective current value is much greater than the value of the SCR peak cycle surge value and can damage the SCR permanently. To overcome this problem in the developed technique, an addition of series resistance is made with capacitors which minimize the effect of transient level on SCR and source. Furthermore, due to this resistance the other component size or value is decreased which helps in minimizing the effect of transient current at SCR and source. Another aim is to build the breaker structure in such an optimize way so that to minimize dissipation and weight as compared to its classic structure along with enhancement of efficiency. The proposed strategy of DC fault for IPS is validated through two case studies done in PSCAD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MVDC:

Medium voltage direct current

LVDC:

Low voltage direct current

IPS:

Integrated power system

MVAC:

Medium voltage alternating current

SCR:

Silicon controlled rectifier

C–L:

Capacitor–inductor

R–L:

Resistance–inductor

\(I_\mathrm{C}\) :

Capacitor current

\(V_\mathrm{C}\) :

Capacitor voltage

\(I_L\) :

Inductor current

\(V_L\) :

Inductor voltage

\({I}_{\mathrm{SCR}}\) :

Current through SCR

\({V}_{\mathrm{SCR}}\) :

Voltage across SCR

\({G}_{\mathrm{f}}\) :

Fault conductance

HFC:

High frequency conduction

References

  1. Cuzner, R.M.; Singh, V.: Future shipboard MVdc system protection requirements and solid-state protective device topological tradeoffs. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 244–259 (2017)

    Article  Google Scholar 

  2. Doerry, N.: Designing electrical power systems for survivability. Nav. Eng. J. 119(2), 25–34 (2007)

    Article  Google Scholar 

  3. Doerry, N.; Amy, J.; Krolick, C.: History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. Navy. Proc. IEEE 103(12), 2243–2251 (2015)

    Article  Google Scholar 

  4. Petersen, L.J.; Ziv, M.; Burns, D.P.; Dinh, T.Q.; Malek, P.E.: US Navy efforts towards development of future naval weapons and integration into an all electric warship (AEW). In: Proceedings of Engineering, Weapon (2011)

  5. Petersen, L.J.; Hoffman, D.J.; Borraccini, J.P.; Swindler, S.B.: Next-generation power and energy: maybe not so next generation. J. Nav. Eng. 122(4), 59–74 (2010)

    Article  Google Scholar 

  6. Herbst, J.D.; Gattozzi, A.L.; Ouroua, A.; Uriarte, F.M.: Flexible test bed for MVDC and HFAC electric ship power system architectures for Navy ships. In: Proceedings of IEEE Electric Ship Technologies Symposium, Alexandria, VA, USA, pp. 66–71 (2011)

  7. Schmerda, R.; Cuzner, R.; Clark, R.; Nowak, D.; Bunzel, S.: Shipboard solid-state protection: overview and applications. IEEE Electrif. Mag. 1(1), 32–39 (2013)

    Article  Google Scholar 

  8. Satpathi, K.; Ukil, A.: Protection Strategies for LVDC Distribution System. IEEE Power, Tech Eindhoven (2015)

  9. Salomonsson, D.; Sannino, A.: Low-voltage DC distribution system for commercial power systems with sensitive electronic loads. IEEE Trans. Power Deliv. 22(3), 1620–1627 (2007)

    Article  Google Scholar 

  10. Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M.: Advanced LVDC electrical power architectures and microgrids: a step toward a new generation of power distribution networks. IEEE Electrif. Mag. 2(1), 54–65 (2014)

    Article  Google Scholar 

  11. Park, J.-D.; Candelaria, J.: Fault detection and isolation in low voltage DC-bus micro grid system. IEEE Trans. Power Deliv. 28(2), 779–787 (2013)

    Article  Google Scholar 

  12. Cuzner, R.; MacFarlin, D.; Clinger, D.; Rumney, M.; Castles, G.: Circuit breaker protection considerations in power converter-fed DC systems. In: Electric Ship Technologies Symposium, 2009. ESTS 2009, pp. 360–367. IEEE (2009)

  13. Cuzner R.; Venkataramanan, G.: The status of dc micro-grid protection. In: Industry Applications Society Annual Meeting, 2008. IAS ’08, pp. 1–8. IEEE (2008)

  14. Cairoli, P.; Dougal, R.A.: New Horizons in DC Shipboard Power Systems: new fault protection strategies are essential to the adoption of dc power systems. IEEE Electrif. Mag. 1(2), 38–45 (2013)

    Article  Google Scholar 

  15. Chen, S.-M.; Liang, T.-J.; Hu, K.-R.: Design, analysis, and implementation of solar power optimizer for DC distribution system. IEEE Trans. Power Electron. 28(4), 1764–1772 (2013)

    Article  Google Scholar 

  16. Byeon, G.; et al.: Energy management strategy of the DC distribution system in buildings using the EV service model. IEEE Trans. Power Electron. 28(4), 1544–1554 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kempkes, M.; Roth, I.; Gaudreau, M.: Solid-state circuit breakers for medium voltage DC power. In: Electric Ship Technologies Symposium (ESTS), 2011 IEEE (2011)

  18. Schmerda, R.; et al.: Shipboard solid-state protection: overview and applications. IEEE Electrif. Mag. 1(1), 32–39 (2013)

    Article  Google Scholar 

  19. Park, Jung-Do; Candelaria, Jared: Fault detection and isolation in low-voltage DC-bus microgrid system. IEEE Trans. Power Deliv. 28(2), 779–787 (2013)

    Article  Google Scholar 

  20. Maqsood, A.; Corzine, K.A.: Integration of Z-source breakers into zonal DC ship power system microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 269–277 (2017)

    Article  Google Scholar 

  21. Maqsood, A.; Overstreet, A.; Corzine, K.A.: Modified Z-source DC circuit breaker topologies. IEEE Trans. Power Electron. 31(10), 7394–7403 (2016)

    Google Scholar 

  22. Overstreet, A.; Maqsood, A.; Corzine, K.: Modified Z-source DC circuit breaker topologies. In: IEEE Power systems conference (PSC) (2014)

  23. Chang, A.H.; Sennett, B.R.; Avestruz, A.-T.; et al.: Analysis and design of DC system protection using Z-source circuit breaker. IEEE Trans. Power Electron. 31(2), 1036–1049 (2016)

    Article  Google Scholar 

  24. Cuzner, R.M.; Venkataramanan, G.: The status of DC micro-grid protection. In: Industry Applications Society Annual Meeting, 2008. IAS’08. IEEE, IEEE 2008

  25. Cuzner, R., et al.: Circuit breaker protection considerations in power converter-fed DC systems. In: 2009 IEEE Electric Ship Technologies Symposium (2009)

  26. Corzine, K.A.; Ashton, R.W.: A new Z-source DC circuit breaker. IEEE Trans. Power Electron. 27(6), 2796–2804 (2012)

    Article  Google Scholar 

  27. Rajakaruna, S.; Jayawickrama, L.: Steady-state analysis and designing impedance network of Z-source invertersa. IEEE Trans. Ind. Electron. 57(7), 2483–2491 (2010)

    Article  Google Scholar 

  28. Shen, M.; Peng, F.Z.: Operation modes and characteristics of the Z-source inverter with small inductance or low power factor. IEEE Trans. Ind. Electron. 55(1), 89–96 (2008)

    Article  Google Scholar 

  29. Vijlee, S.Z.; Ouroua, A.; Domaschk, L.N.; Beno, J.H.: Directly-coupled gas turbine permanent magnet generator sets for prime power generation on board electric ships. In: IEEE Electric Ship Technologies Symposium (ESTS), pp. 340–347 (2007)

  30. Adnanes, A.K.: Maritime electrical installations and diesel electric propulsion. Technical Report (2003)

  31. http://www.semtexinternational.com/SDiv/SPL/TST/HPSI/TN880CH.pdf

  32. Mohan, N.; Undeland, T.M.: Power Electronics: Converters, Applications, and Design. Wiley, New York (2007)

    Google Scholar 

  33. Brugg cables - mittelspannungskabel - mittelspannungskabel (cu) -xkdt 1-leiter ms-polymerkabel 20/12kv (2011)

  34. Chang, A.H.C.: Power Processing and Active Protection for Photovoltaic Energy Extraction. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (2015)

    Google Scholar 

  35. Javaid, U.; Dujic, D.; van der Merwe, W.: MVDC marine electrical distribution: are we ready? In: 41st Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 000 823–000 828 (2015)

  36. Zhou, M.; Sun, Z.; Low, Q.; Siek, L.: Fast transient response DC–DC converter with start-up in-rush current control. Electron. Lett. 52(22), 1883–1885 (2016)

    Article  Google Scholar 

  37. Chan, A.H.; Sennett, B.R.; et al.: Analysis and design of DC system protection using Z-source circuit breaker. IEEE Trans. Power Electron. 31(2), 1036–1049 (2016)

    Article  Google Scholar 

  38. Gray, W.L.: DC to DC power conversion module for the all-electric ship. M.S. Thesis, Massachusetts Institute of Technology (2011)

  39. Keith, C.: DC microgrid protection with the Z-source breaker. IEEE Industrial Electronics Society IECON (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munira Batool.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.I.A., Batool, M., Khaliq, A. et al. DC Fault Protection Strategy for Medium Voltage Integrated Power System: Development and Assessment. Arab J Sci Eng 43, 2859–2872 (2018). https://doi.org/10.1007/s13369-017-2931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2931-2

Keywords

Navigation