Skip to main content
Log in

Feather-Degrading Bacteria: Their Biochemical and Genetic Characteristics

  • Review Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Feather-degrading bacteria are a group of micro-organisms with the ability to degrade feather. They have been identified ubiquitously both in wild birds and poultry, as well as the feather waste produced by the food industry. In wild birds, they play a major role in influencing the colour of plumage and sexual selection. However, their significance for the poultry industry seems to be even greater. This branch of the food industry produces significant amounts of feather waste, which is difficult to process using the traditional chemical and physical methods. Due to the specific biochemical structure of feather, dominated by beta-keratin strengthened by numerous disulphide bonds, bacterial cultures seem to be the most economical and environment-friendly agent in the degradation of feather waste. The ability to degrade feathers is dependent on production of keratinase and disulphide reductase. The present review characterizes in detail a wide range of keratinases isolated from feather-degrading bacteria with potential application in feather waste processing. Furthermore, molecular methods of identifying and analysing the species of feather-degrading bacteria have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kent, C.M.; Burtt, E.H.: Feather-degrading bacilli in the plumage of wild birds: prevalence and relation to feather wear. Auk 133(4), 583–592 (2016). doi:10.1642/Auk-16-39.1

    Article  Google Scholar 

  2. Fulop, A.; Czirjak, G.A.; Pap, P.L.; Vagasi, C.I.: Feather-degrading bacteria, uropygial gland size and feather quality in House Sparrows Passer domesticus. Ibis 158(2), 362–370 (2016). doi:10.1111/ibi.12342

    Article  Google Scholar 

  3. Stiborova, H.; Branska, B.; Vesela, T.; Lovecka, P.; Stranska, M.; Hajslova, J.; Jiru, M.; Patakova, P.; Demnerova, K.: Transformation of raw feather waste into digestible peptides and amino acids. J. Chem. Technol. Biot. 91(6), 1629–1637 (2016). doi:10.1002/jctb.4912

    Article  Google Scholar 

  4. Prum, O.R.; Brush, A.H.: Which came first, the feather or the bird? Sci. Am. 288(3), 84–93 (2003)

    Article  Google Scholar 

  5. Dalla Valle, L.; Nardi, A.; Belvedere, P.; Toni, M.; Alibardi, L.: Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. Dev. Dyn. 236(7), 1939–1953 (2007). doi:10.1002/dvdy.21202

    Article  Google Scholar 

  6. Schweitzer, M.H.; Watt, J.A.; Avci, R.; Knapp, L.; Chiappe, L.; Norell, M.; Marshall, M.: Beta-keratin specific immunological reactivity in feather-like structures of the cretaceous alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. 285(2), 146–157 (1999)

    Article  Google Scholar 

  7. Fraser, R.D.; Parry, D.A.: Molecular packing in the feather keratin filament. J. Struct. Biol. 162(1), 1–13 (2008). doi:10.1016/j.jsb.2008.01.011

    Article  Google Scholar 

  8. Cedrola, S.M.; de Melo, A.C.; Mazotto, A.M.; Lins, U.; Zingali, R.B.; Rosado, A.S.; Peixoto, R.S.; Vermelho, A.B.: Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J. Microbiol. Biotechnol. 28(3), 1259–1269 (2012). doi:10.1007/s11274-011-0930-0

    Article  Google Scholar 

  9. Gupta, R.; Ramnani, P.: Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70(1), 21–33 (2006). doi:10.1007/s00253-005-0239-8

    Article  Google Scholar 

  10. Loschke, F.; Homberg, M.; Magin, T.M.: Keratin isotypes control desmosome stability and dynamics through PKCalpha. J. Invest. Dermatol. (2015). doi:10.1038/jid.2015.403

    Google Scholar 

  11. Calvaresi, M.; Eckhart, L.; Alibardi, L.: The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J. Struct. Biol. 194(3), 282–291 (2016). doi:10.1016/j.jsb.2016.03.004

    Article  Google Scholar 

  12. Ng, C.S.; Wu, P.; Fan, W.L.; Yan, J.; Chen, C.K.; Lai, Y.T.; Wu, S.M.; Mao, C.T.; Chen, J.J.; Lu, M.Y.; Ho, M.R.; Widelitz, R.B.; Chen, C.F.; Chuong, C.M.; Li, W.H.: Genomic organization, transcriptomic analysis, and functional characterization of avian alpha- and beta-keratins in diverse feather forms. Genome Biol. Evol. 6(9), 2258–2273 (2014). doi:10.1093/gbe/evu181

    Article  Google Scholar 

  13. Burtt, E.H.; Ichida, J.M.: Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116(2), 364–372 (1999)

    Article  Google Scholar 

  14. Shawkey, M.D.; Pillai, S.R.; Hill, G.E.: Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J. Avian Biol. 34(4), 345–349 (2003). doi:10.1111/j.0908-8857.2003.03193.x

    Article  Google Scholar 

  15. Tiquia, S.M.; Ichida, J.M.; Keener, H.M.; Elwell, D.L.; Burtt Jr., E.H.; Michel Jr., F.C.: Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl. Microbiol. Biotechnol. 67(3), 412–419 (2005). doi:10.1007/s00253-004-1788-y

    Article  Google Scholar 

  16. Burtt, E.H.; Ichida, J.M.: Gloger’s rule, feather-degradlng bacteria, and color variation among song sparrows. Condor 106(3), 681–686 (2004). doi:10.1650/7383

    Article  Google Scholar 

  17. Gunderson, A.R.; Forsyth, M.H.; Swaddle, J.P.: Evidence that plumage bacteria influence feather coloration and body condition of eastern bluebirds Sialia sialis. J. Avian Biol. 40(4), 440–447 (2009). doi:10.1111/j.1600-048X.2008.04650.x

    Article  Google Scholar 

  18. Shawkey, M.D.; Pillai, S.R.; Hill, G.E.: Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften 96(1), 123–128 (2009). doi:10.1007/s00114-008-0462-0

    Article  Google Scholar 

  19. Czirjak, G.A.; Pap, P.L.; Vagasi, C.I.; Giraudeau, M.; Muresan, C.; Mirleau, P.; Heeb, P.: Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften 100(2), 145–151 (2013). doi:10.1007/s00114-012-1005-2

    Article  Google Scholar 

  20. Kim, J.M.; Lim, W.J.; Suh, H.J.: Feather-degrading Bacillus species from poultry waste. Process Biochem. 37(3), 287–291 (2001). doi:10.1016/S0032-9592(01)00206-0

    Article  Google Scholar 

  21. Gessesse, A.; Hatti-Kaul, R.; Gashe, B.A.; Mattiasson, B.: Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb. Technol. 32(5), 519–524 (2003). doi:10.1016/S0141-0229(02)00324-1

    Article  Google Scholar 

  22. Sangali, S.; Brandelli, A.: Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89(5), 735–743 (2000)

    Article  Google Scholar 

  23. Riffel, A.; Lucas, F.; Heeb, P.; Brandelli, A.: Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179(4), 258–265 (2003). doi:10.1007/s00203-003-0525-8

    Article  Google Scholar 

  24. Riffel, A.; Brandelli, A.: Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J. Ind. Microbiol. Biotechnol. 29(5), 255–258 (2002). doi:10.1038/sj.jim.7000307

    Article  Google Scholar 

  25. Kornillowicz-Kowalska, T.; Bohacz, J.: Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 31(8), 1689–1701 (2011). doi:10.1016/j.wasman.2011.03.024

    Article  Google Scholar 

  26. Saha, S.; Dhanasekaran, D.; Shanmugapriya, S.; Latha, S.: Nocardiopsis sp. SD5: a potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India. J. Basic Microbiol. 53(7), 608–616 (2013). doi:10.1002/jobm.201200105

    Article  Google Scholar 

  27. Khardenavis, A.A.; Kapley, A.; Purohit, H.J.: Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manag. 29(4), 1409–1415 (2009). doi:10.1016/j.wasman.2008.10.009

    Article  Google Scholar 

  28. Lucas, F.S.; Broennimann, O.; Febbraro, I.; Heeb, P.: High diversity among feather-degrading bacteria from a dry meadow soil. Microb. Ecol. 45(3), 282–290 (2003). doi:10.1007/s00248-002-2032-x

    Article  Google Scholar 

  29. Grazziotin, A.; Pimentel, F.A.; de Jong, E.V.; Brandelli, A.: Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126(1–2), 135–144 (2006). doi:10.1016/j.anifeedsci.2005.06.002

    Article  Google Scholar 

  30. Ramnani, P.; Singh, R.; Gupta, R.: Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51(3), 191–196 (2005). doi:10.1139/w04-123

    Article  Google Scholar 

  31. Forgacs, G.; Alinezhad, S.; Mirabdollah, A.; Feuk-Lagerstedt, E.; Horvath, I.S.: Biological treatment of chicken feather waste for improved biogas production. J. Environ. Sci. 23(10), 1747–1753 (2011)

    Article  Google Scholar 

  32. Fontoura, R.; Daroit, D.J.; Correa, A.P.; Meira, S.M.; Mosquera, M.; Brandelli, A.: Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol. 31(5), 506–513 (2014). doi:10.1016/j.nbt.2014.07.002

    Article  Google Scholar 

  33. Yang, L.; Wang, H.; Lv, Y.; Bai, Y.; Luo, H.; Shi, P.; Huang, H.; Yao, B.: Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11. J. Agric. Food Chem. 64(1), 78–84 (2016). doi:10.1021/acs.jafc.5b04747

    Article  Google Scholar 

  34. Zeng, Y.H.; Shen, F.T.; Tan, C.C.; Huang, C.C.; Young, C.C.: The flexibility of UV-inducible mutation in Deinococcus ficus as evidenced by the existence of the imuB-dnaE2 gene cassette and generation of superior feather degrading bacteria. Microbiol. Res. 167(1), 40–47 (2011). doi:10.1016/j.micres.2011.02.008

    Article  Google Scholar 

  35. Ouled-Haddar, H.; Zaghloul, T.I.; Saeed, H.M.: Expression of alkaline proteinase gene in two recombinant Bacillus cereus feather-degrading strains. Folia Microbiol. 55(1), 23–27 (2010). doi:10.1007/s12223-010-0004-y

    Article  Google Scholar 

  36. Kshetri, P.; Ningthoujam, D.S.: Keratinolytic activities of alkaliphilic Bacillus sp MBRL 575 from a novel habitat, limestone deposit site in Manipur, India. Springerplus 5, 595 (2016). doi:10.1186/s40064-016-2239-9

    Article  Google Scholar 

  37. Lange, L.; Huang, Y.; Busk, P.K.: Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 100(5), 2083–2096 (2016). doi:10.1007/s00253-015-7262-1

    Article  Google Scholar 

  38. Rajput, R.; Sharma, R.; Gupta, R.: Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Res. 2010, 132148 (2010). doi:10.4061/2010/132148

    Article  Google Scholar 

  39. Takami, H.; Akiba, T.; Horikoshi, K.: Characterization of an alkaline protease from Bacillus sp. no. AH-101. Appl. Microbiol. Biotechnol. 33(5), 519–523 (1990)

    Article  Google Scholar 

  40. Horikoshi, H.T.A.: Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. Appl. Microbiol. Biotechnol. 30(2), 120–124 (1989)

    Google Scholar 

  41. Park, G.T.; Son, H.J.: Keratinolytic activity of Bacillus megaterium F7–1, a feather-degrading mesophilic bacterium. Microbiol. Res. 164(4), 478–485 (2009). doi:10.1016/j.micres.2007.02.004

    Article  Google Scholar 

  42. Schallmey, M.; Singh, A.; Ward, O.P.: Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50(1), 1–17 (2004). doi:10.1139/w03-076

    Article  Google Scholar 

  43. Clark, D.J.; Hawrylik, S.J.; Kavanagh, E.; Opheim, D.J.: Purification and characterization of a unique alkaline elastase from Micrococcus luteus. Protein Expr. Purif. 18(1), 46–55 (2000). doi:10.1006/prep.1999.1166

    Article  Google Scholar 

  44. Nam, G.W.; Lee, D.W.; Lee, H.S.; Lee, N.J.; Kim, B.C.; Choe, E.A.; Hwang, J.K.; Suhartono, M.T.; Pyun, Y.R.: Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178(6), 538–547 (2002). doi:10.1007/s00203-002-0489-0

    Article  Google Scholar 

  45. Yusuf, I.; Ahmad, S.A.; Phang, L.Y.; Syed, M.A.; Shamaan, N.A.; Abdul Khalil, K.; Dahalan, F.A.; Shukor, M.Y.: Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. J. Environ. Manag. 183, 182–195 (2016). doi:10.1016/j.jenvman.2016.08.059

    Article  Google Scholar 

  46. Gupta, S.; Singh, R.: Hydrolyzing proficiency of keratinases in feather degradation. Indian J. Microbiol. 54(4), 466–470 (2014). doi:10.1007/s12088-014-0477-5

    Article  Google Scholar 

  47. Lo, W.H.; Too, J.R.; Wu, J.Y.: Production of keratinolytic enzyme by an indigenous feather-degrading strain Bacillus cereus Wu2. J. Biosci. Bioeng. 114(6), 640–647 (2012). doi:10.1016/j.jbiosc.2012.07.014

    Article  Google Scholar 

  48. Bockle, B.; Muller, R.: Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl. Environ. Microbiol. 63(2), 790–792 (1997)

    Google Scholar 

  49. Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2), 697–703 (1991)

    Article  Google Scholar 

  50. Woese, C.R.; Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74(11), 5088–5090 (1977)

    Article  Google Scholar 

  51. Gu, Z.; Zhu, H.; Xie, X.; Wang, Y.; Liu, X.; Yao, Q.: The feather-degrading bacterial community in two soils as revealed by a specific primer targeting serine-type keratinolytic proteases. World J. Microbiol. Biotechnol. 32(10), 165 (2016). doi:10.1007/s11274-016-2125-1

    Article  Google Scholar 

  52. Zhao, D.; Hu, H.; Zhang, Q.: Primers and probe design for identification and analysis of oil degradation bacteria (Bacillus licheniformis) with quantitative PCR technology. Biotechnology (Faisalabad) 14(4), 194–199 (2015). doi:10.3923/biotech.2015.194.199

    Article  Google Scholar 

  53. Poopathi, S.; Thirugnanasambantham, K.; Mani, C.; Lakshmi, P.V.; Ragul, K.: Purification and characterization of keratinase from feather degrading bacterium useful for mosquito control—a new report. Trop. Biomed. 31(1), 97–109 (2014)

    Google Scholar 

  54. Kojima, M.; Kanai, M.; Tominaga, M.; Kitazume, S.; Inoue, A.; Horikoshi, K.: Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10(3), 229–235 (2006). doi:10.1007/s00792-005-0491-y

    Article  Google Scholar 

  55. Sahoo, D.K.; Das, A.; Thatoi, H.; Mondal, K.C.; Mohapatra, P.K.: Keratinase production and biodegradation of whole chicken feather keratin by a newly isolated bacterium under submerged fermentation. Appl. Biochem. Biotechnol. 167(5), 1040–1051 (2012). doi:10.1007/s12010-011-9527-1

    Article  Google Scholar 

  56. Bihari, Z.; Videki, D.; Mihalik, E.; Szvetnik, A.; Szabo, Z.; Balazs, M.; Kesseru, P.; Kiss, I.: Degradation of native feathers by a novel keratinase-producing, thermophilic isolate, Brevibacillus thermoruber T1E. Zeitschrift fur Naturforschung. C. J. Biosci. 65(1–2), 134–140 (2010)

    Google Scholar 

  57. Cao, Z.J.; Zhang, Q.; Wei, D.K.; Chen, L.; Wang, J.; Zhang, X.Q.; Zhou, M.H.: Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J. Ind. Microbiol. Biotechnol. 36(2), 181–188 (2009). doi:10.1007/s10295-008-0469-8

    Article  Google Scholar 

  58. Agrahari, S.; Wadhwa, N.: Isolation and characterization of feather degrading enzymes from Bacillus megaterium SN1 isolated from Ghazipur poultry waste site. Prikladnaia biokhimiia i mikrobiologiia 48(2), 199–205 (2012)

    Google Scholar 

  59. Fakhfakh, N.; Kanoun, S.; Manni, L.; Nasri, M.: Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can. J. Microbiol. 55(4), 427–436 (2009). doi:10.1139/w08-143

    Article  Google Scholar 

  60. Riffel, A.; Brandelli, A.; Bellato Cde, M.; Souza, G.H.; Eberlin, M.N.; Tavares, F.C.: Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128(3), 693–703 (2007). doi:10.1016/j.jbiotec.2006.11.007

    Article  Google Scholar 

  61. Bach, E.; Daroit, D.J.; Correa, A.P.; Brandelli, A.: Production and properties of keratinolytic proteases from three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils. Biodegradation 22(6), 1191–1201 (2011). doi:10.1007/s10532-011-9474-0

    Article  Google Scholar 

  62. De Azeredo, L.A.; De Lima, M.B.; Coelho, R.R.; Freire, D.M.: Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. J. Appl. Microbiol. 100(4), 641–647 (2006). doi:10.1111/j.1365-2672.2005.02791.x

    Article  Google Scholar 

  63. Allpress, J.D.; Mountain, G.; Gowland, P.C.: Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett. Appl. Microbiol. 34(5), 337–342 (2002)

    Article  Google Scholar 

  64. Jaouadi, B.; Ellouz-Chaabouni, S.; Rhimi, M.; Bejar, S.: Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90(9), 1291–1305 (2008). doi:10.1016/j.biochi.2008.03.004

    Article  Google Scholar 

  65. Lin, H.H.; Yin, L.J.; Jiang, S.T.: Expression and purification of pseudomonas aeruginosa keratinase in Bacillus subtilis DB104 expression system. J. Agric. Food Chem. 57(17), 7779–7784 (2009). doi:10.1021/jf901903p

  66. Thys, R.C.; Brandelli, A.: Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J. Appl. Microbiol. 101(6), 1259–1268 (2006). doi:10.1111/j.1365-2672.2006.03050.x

  67. Herzog, B.; Overy, D.P.; Haltli, B.; Kerr, R.G.: Discovery of keratinases using bacteria isolated from marine environments. Syst. Appl. Microbiol. 39(1), 49–57 (2016). doi:10.1016/j.syapm.2015.10.004

    Article  Google Scholar 

  68. Evelise Bacha, V.S.A.; Daroitb, Daniel Joner; Corrêaa, Ana Paula Folmer; Segalinc, Jeferson; Brandelli, Adriano: Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochem. 47(12), 2455–2462 (2012)

    Article  Google Scholar 

  69. Syed, D.G.; Lee, J.C.; Li, W.J.; Kim, C.J.; Agasar, D.: Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol. 100(5), 1868–1871 (2009). doi:10.1016/j.biortech.2008.09.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Szparecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalczyk, P., Mahdi-Oraibi, S., Misiewicz, A. et al. Feather-Degrading Bacteria: Their Biochemical and Genetic Characteristics. Arab J Sci Eng 43, 33–41 (2018). https://doi.org/10.1007/s13369-017-2700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2700-2

Keywords

Navigation