Skip to main content
Log in

New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review

  • Review Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The use of membrane technology for produced oily water treatment has become an active area of research for both academia and industry. The search for membranes with enhanced efficiency and prolonged life time during oily water treatment has been a rallying point for many scientists. The focus of this review is on the advancement of polymeric and ceramic membrane technologies, membrane modification strategies used to mitigate membrane fouling and optimization of permeate flux, particularly for oily water systems. In addition, recent methodologies used for modeling the permeate flux decline are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANFIS:

Adaptive neuro-fuzzy inference system

BDSA:

2,2\(^{\prime }\)-Benzidinedisulfonic acid

BOD:

Biochemical oxygen demand

CA:

Cellulose acetate

CFD:

Computational fluid dynamic

CFV:

Cross-flow velocity

COD:

Chemical oxygen demand

COD:

Coefficient of determination

EDTA:

Ethylenediaminetetraacetic acid

EPR:

Evolutionary polynomial regression

GA:

Genetic algorithm

GP:

Genetic programming

MF:

Microfiltration

Mp:

Trimethylolpropane

MPD:

M-phenylenediamine

NF:

Nanofiltration

NMP:

N-methylpyrrolidone

PAC:

Polyaluminium chloride

PDA:

Polydopamine

PEG:

Polyethylene glycol

PES:

Polyethersulfone

PET:

Poly(ethylene terephthalate)

PNIPAAM:

Poly(oligoethylene glycol methacrylate)

PPDA:

Poly(diallyldimethylammonium chloride)

PPEES:

1,4-Phenylene ether ether sulfone

PPEGMA:

Poly(n-isopropylacrylamide)

PSf:

Polysulfone

PVC:

Polyvinyl chloride

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrrolidone

RO:

Reverse osmosis

SDS:

Sodium dodecyl sulfate

SiC:

Silicon carbide

TDS:

Total dissolved solid

TFC:

Thin film composite

TMC:

Trimesoyl chloride

TMP:

Transmembrane pressure

TOC:

Total organic carbon

TSS:

Total suspended solids

UF:

Ultrafiltration

VOF:

Volume of fluid

References

  1. Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z.: Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 170(2), 530–551 (2009)

    Article  Google Scholar 

  2. Takht Ravanchi, M.; Kaghazchi, T.; Kargari, A.: Application of membrane separation processes in petrochemical industry: a review. Desalination 235(1), 199–244 (2009)

    Article  Google Scholar 

  3. Padaki, M.; Murali, R.S.; Abdullah, M.; Misdan, N.; Moslehyani, A.; Kassim, M.; Hilal, N.; Ismail, A.: Membrane technology enhancement in oil–water separation. A review. Desalination 357, 197–207 (2015)

    Article  Google Scholar 

  4. Kornboonraksa, T.: Preliminary study of rapid enhanced effective micro-organisms (REEM) in oil and grease trap from canteen wastewater. In: Kurisu, F., Ramanatha, A., Kazmi, A.A., Kumar, M. (eds.) Trends in Asian Water Environmental Science and Technology, pp 71–80. Springer (2017)

  5. Singh, R.: Produced water treatment for beneficial uses. Filtr. Sep. 47(1), 20–23 (2010)

    Article  Google Scholar 

  6. Bae, T.-H.; Kim, I.-C.; Tak, T.-M.: Preparation and characterization of fouling-resistant \(\text{TiO}_2\) self-assembled nanocomposite membranes. J. Membr. Sci. 275(1), 1–5 (2006)

    Article  Google Scholar 

  7. Kwak, S.-Y.; Kim, S.H.; Kim, S.S.: Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of \({\text{TiO}}_{2}\) nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35(11), 2388–2394 (2001)

    Article  Google Scholar 

  8. Rahimpour, A.; Jahanshahi, M.; Mollahosseini, A.; Rajaeian, B.: Structural and performance properties of UV-assisted TiO 2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31–38 (2012)

    Article  Google Scholar 

  9. Khemakhem, S.; Amar, R.B.; Hassen, R.B.; Larbot, A.; Medhioub, M.; Salah, A.B.; Cot, L.: New ceramic membranes for tangential waste-water filtration. Desalination 167, 119–122 (2004)

    Article  Google Scholar 

  10. Lu, D.; Zhang, T.; Ma, J.: Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets. Environ. Sci. Technol. 49(7), 4235–4244 (2015)

    Article  Google Scholar 

  11. Bet-moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M.: \({\text{TiO}}_{2}\) nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016). doi:10.1016/j.cej.2015.06.124

    Article  Google Scholar 

  12. Jamaly, S.; Giwa, A.; Hasan, S.W.: Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J. Environ. Sci. 37, 15–30 (2015). doi:10.1016/j.jes.2015.04.011

    Article  Google Scholar 

  13. Al-Ani, F.H.: Treatment of oily wastewater produced from old processing plant of north oil company. Tikrit J. Eng. Sci.: TJES 19(1), 23–34 (2012)

  14. Zhu, Y.; Wang, D.; Jiang, L.; Jin, J.: Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 6(5), e101 (2014)

    Article  Google Scholar 

  15. Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q.: Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170(2), 381–394 (2011)

    Article  Google Scholar 

  16. Yu, L.; Han, M.; He, F.: A review of treating oily wastewater. Arab. J. Chem. (2013). doi:10.1016/j.arabjc.2013.07.020

  17. Pintor, A.M.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A.: Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem. Eng. J. 297, 229–255 (2016)

    Article  Google Scholar 

  18. Kim, J.; Van der Bruggen, B.: The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158(7), 2335–2349 (2010). doi:10.1016/j.envpol.2010.03.024

    Article  Google Scholar 

  19. Jhaveri, J.H.; Murthy, Z.: A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379, 137–154 (2016)

    Article  Google Scholar 

  20. Yi, X.; Yu, S.; Shi, W.; Sun, N.; Jin, L.; Wang, S.; Zhang, B.; Ma, C.; Sun, L.: The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized \(\text{TiO}_2/\text{Al}_2\text{O}_3\). Desalination 281, 179–184 (2011)

    Article  Google Scholar 

  21. Choi, H.; Al-Abed, S.R.; Dionysiou, D.D.; Stathatos, E.; Lianos, P.: \(\text{TiO}_2\)-based advanced oxidation nanotechnologies for water purification and reuse. Sustain. Sci. Eng. 2, 229–254 (2010)

    Article  Google Scholar 

  22. Munirasu, S.; Haija, M.A.; Banat, F.: Use of membrane technology for oil field and refinery produced water treatment—a review. Process Saf. Environ. Prot. 100, 183–202 (2016). doi:10.1016/j.psep.2016.01.010

    Article  Google Scholar 

  23. Kota, A.K.; Kwon, G.; Choi, W.; Mabry, J.M.; Tuteja, A.: Hygro-responsive membranes for effective oil–water separation. Nat. Commun. 3, 1025 (2012)

    Article  Google Scholar 

  24. Nakajima, A.: Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater. 3(5), 49–56 (2011)

    Article  Google Scholar 

  25. Zhou, R.; Ren, P.-F.; Yang, H.-C.; Xu, Z.-K.: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 466, 18–25 (2014)

    Article  Google Scholar 

  26. Zhang, J.; Seeger, S.: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21(24), 4699–4704 (2011)

    Article  Google Scholar 

  27. Salahi, A.; Abbasi, M.; Mohammadi, T.: Permeate flux decline during UF of oily wastewater: experimental and modeling. Desalination 251(251), 153–160 (2010)

    Article  Google Scholar 

  28. Campos, J.C.; Borges, R.M.H.; Oliveira Filho, A.M.D.; Nobrega, R.; Sant’Anna, G.L.: Oilfield wastewater treatment by combined microfiltration and biological processes. Water Res. 36(31), 95–104 (2002)

    Article  Google Scholar 

  29. Alzahrani, S.; Mohammad, A.W.; Hilal, N.; Abdullah, P.; Jaafar, O.: Comparative study of NF and RO membranes in the treatment of produced water—Part I: assessing water quality. Desalination 315, 18–26 (2013)

    Article  Google Scholar 

  30. Tang, C.Y.; Chong, T.H.; Fane, A.G.: Colloidal interactions and fouling of NF and RO membranes: a review. Adv. Colloid Interface Sci. 164(161), 126–143 (2011)

    Article  Google Scholar 

  31. Salahi, A.; Gheshlaghi, A.; Mohammadi, T.; Madaeni, S.S.: Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 262(261), 235–242 (2010)

    Article  Google Scholar 

  32. Reyhani, A.; Rekabdar, F.; Hemmati, M.; SafeKordi, A.A.; Ahmadi, M.: Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach. Desalin. Water Treat. 51(40–42), 7499–7508 (2013)

    Article  Google Scholar 

  33. Duraisamy, R.T.: Screening of polymeric membranes and optimization of operating conditions for the treatment of produced water. University of Regina, Regina (2013)

    Google Scholar 

  34. Mansourpanah, Y.; Madaeni, S.; Rahimpour, A.; Kheirollahi, Z.; Adeli, M.: Changing the performance and morphology of polyethersulfone/polyimide blend nanofiltration membranes using trimethylamine. Desalination 256(1), 101–107 (2010)

    Article  Google Scholar 

  35. Méricq, J.-P.; Mendret, J.; Brosillon, S.; Faur, C.: High performance PVDF-\(\text{TiO}_2\) membranes for water treatment. Chem. Eng. Sci. 123, 283–291 (2015)

    Article  Google Scholar 

  36. Qadir, D.; Mukhtar, H.; Keong, L.K.: Mixed matrix membranes for water purification applications. Sep. Purif. Rev. 46(1), 62–80 (2017)

    Article  Google Scholar 

  37. Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A.F.: A novel thin film composite forward osmosis membrane prepared from PSf-\(\text{TiO}_2\) nanocomposite substrate for water desalination. Chem. Eng. J. 237, 70–80 (2014)

    Article  Google Scholar 

  38. Pourjafar, S.; Jahanshahi, M.; Rahimpour, A.: Optimization of \(\text{TiO}_2\) modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination 315, 107–114 (2013)

    Article  Google Scholar 

  39. Pourjafar, S.; Rahimpour, A.; Jahanshahi, M.: Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with \(\text{TiO}_2\) nanoparticles for better performance and surface properties. J. Ind. Eng. Chem. 18(4), 1398–1405 (2012)

    Article  Google Scholar 

  40. Li, Y.S.; Yan, L.; Xiang, C.B.; Hong, L.J.: Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination 196(191), 176–183 (2006)

    Article  Google Scholar 

  41. Yuliwati, E.; Ismail, A.F.: Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273(271), 226–234 (2011)

    Article  Google Scholar 

  42. Wandera, D.; Wickramasinghe, S.R.; Husson, S.M.: Modification and characterization of ultrafiltration membranes for treatment of produced water. J. Membr. Sci. 373(371), 178–188 (2011)

    Article  Google Scholar 

  43. Masuelli, M.A.: Synthesis polysulfone-acetylethanol ultrafiltration membranes. Application to oily wastewater treatment. Nature 1(3), 37–44 (2013)

    Google Scholar 

  44. Kumar, R.; Isloor, A.M.; Ismail, A.F.; Rashid, S.A.; Matsuura, T.: Polysulfone–Chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties. RSC Adv. 3(21), 7855–7861 (2013)

    Article  Google Scholar 

  45. Zhu, X.; Loo, H.E.; Bai, R.: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 436, 47–56 (2013)

    Article  Google Scholar 

  46. Zhao, Y.F.; Zhu, L.P.; Yi, Z.; Zhu, B.K.; Xu, Y.Y.: Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Membr. Sci. 440, 40–47 (2013)

    Article  Google Scholar 

  47. Zhu, Y.; Zhang, F.; Wang, D.; Pei, X.F.; Zhang, W.; Jin, J.: A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A 1(18), 5758–5765 (2013)

    Article  Google Scholar 

  48. Zhu, X.; Tu, W.; Wee, K.-H.; Bai, R.: Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci. 466, 36–44 (2014). doi:10.1016/j.memsci.2014.04.038

    Article  Google Scholar 

  49. Salahi, A.; Mohammadi, T.; Mosayebi Behbahani, R.; Hemmati, M.: Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization, ANFIS modeling, and performance. J. Environ. Chem. Eng. 3(1), 170–178 (2015). doi:10.1016/j.jece.2014.10.021

    Article  Google Scholar 

  50. Salahi, A.; Mohammadi, T.; Behbahani, R.M.; Hemati, M.: PES and PES/PAN blend ultrafiltration hollow fiber membranes for oily wastewater treatment: preparation, experimental investigation, fouling, and modeling. Adv. Polym. Technol. 34(3) (2015). doi:10.1002/adv.21494

  51. Adib, H.; Hassanajili, S.; Sheikhi-Kouhsar, M.R.; Salahi, A.; Mohammadi, T.: Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment. Korean J. Chem. Eng. 32(1), 159–167 (2015)

    Article  Google Scholar 

  52. Huang, X.; Wang, W.; Liu, Y.; Wang, H.; Zhang, Z.; Fan, W.; Li, L.: Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes. Chem. Eng. J. 273, 421–429 (2015). doi:10.1016/j.cej.2015.03.086

    Article  Google Scholar 

  53. Rajasekhar, T.; Trinadh, M.; Veera Babu, P.; Sainath, A.V.S.; Reddy, A.V.R.: Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. J. Membr. Sci. 481, 82–93 (2015). doi:10.1016/j.memsci.2015.01.030

    Article  Google Scholar 

  54. Baroña, G.N.B.; Lim, J.; Jung, B.: High performance thin film composite polyamide reverse osmosis membrane prepared via m-phenylenediamine and 2,2\(^\prime \)-benzidinedisulfonic acid. Desalination 291, 269–277 (2012)

    Article  Google Scholar 

  55. Kim, S.G.; Hyeon, D.H.; Chun, J.H.; Chun, B.H.; Kim, S.H.: Nanocomposite poly(arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination. J. Membr. Sci. 443, 410–418 (2013)

    Article  Google Scholar 

  56. Kim, S.G.; Chun, J.H.; Chun, B.H.; Kim, S.H.: Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination. Desalination 325, 376–383 (2013)

    Article  Google Scholar 

  57. Matin, A.; Shafi, H.Z.; Khan, Z.; Khaled, M.; Yang, R.; Gleason, K.; Rehman, F.: Surface modification of seawater desalination reverse osmosis membranes: characterization studies & performance evaluation. Desalination 343, 128–139 (2014)

    Article  Google Scholar 

  58. Pendergast, M.M.; Ghosh, A.K.; Hoek, E.M.V.: Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 308, 180–185 (2013)

    Article  Google Scholar 

  59. Mittal, P.; Jana, S.; Mohanty, K.: Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater. Desalination 282, 254–262 (2011)

    Article  Google Scholar 

  60. Ghandashtani, M.B.; Zokaee Ashtiani, F.; Karimi, M.; Fouladitajar, A.: A novel approach to fabricate high performance nano-\(\text{SiO}_2\) embedded PES membranes for microfiltration of oil-in-water emulsion. Appl. Surf. Sci. 349, 393–402 (2015). doi:10.1016/j.apsusc.2015.05.037

    Article  Google Scholar 

  61. Rajabi, H.; Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Astinchap, B.; Zinadini, S.; Razavizadeh, S.H.: Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: influence of nanofiller shape on characterization and fouling resistance. Appl. Surf. Sci. 349, 66–77 (2015). doi:10.1016/j.apsusc.2015.04.214

    Article  Google Scholar 

  62. Yin, J.; Zhou, J.: Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination 365, 46–56 (2015). doi:10.1016/j.desal.2015.02.017

    Article  Google Scholar 

  63. Mishra, S.B.; Sachan, S.; Mishra, P.K.; Ramesh, M.R.: Preparation and characterisation of PPEES-\(\text{TiO}_2\) composite micro-porous UF membrane for oily water treatment. Procedia Mater. Sci. 5, 123–129 (2014). doi:10.1016/j.mspro.2014.07.249

    Article  Google Scholar 

  64. Hua, F.L.; Tsang, Y.F.; Wang, Y.J.; Chan, S.Y.; Chua, H.; Sin, S.N.: Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J. 128(122), 169–175 (2007)

    Article  Google Scholar 

  65. Fang, J.; Qin, G.; Wei, W.; Zhao, X.; Jiang, L.: Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalination 311, 113–126 (2013)

    Article  Google Scholar 

  66. Abadi, S.R.H.; Sebzari, M.R.; Hemati, M.; Rekabdar, F.; Mohammadi, T.: Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265(1), 222–228 (2011)

    Article  Google Scholar 

  67. Reyhani, A.; Mashhadi Meighani, H.: Optimal operating conditions of micro-and ultra-filtration systems for produced-water purification: Taguchi method and economic investigation. Desalin. Water Treat. 57(42), 19642–19654 (2015)

    Article  Google Scholar 

  68. Wang, P.; Xu, N.; Shi, J.: A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes. J. Membr. Sci. 173(2), 159–166 (2000)

    Article  Google Scholar 

  69. Ebrahimi, M.; Willershausen, D.; Ashaghi, K.S.; Engel, L.; Placido, L.; Mund, P.; Bolduan, P.; Czermak, P.: Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination 250(3), 991–996 (2010)

    Article  Google Scholar 

  70. Ebrahimi, M.; Ashaghi, K.S.; Engel, L.; Willershausen, D.; Mund, P.; Bolduan, P.; Czermak, P.: Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination 245(1), 533–540 (2009)

    Article  Google Scholar 

  71. Vasanth, D.; Pugazhenthi, G.; Uppaluri, R.: Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination 320, 386–395 (2013)

    Article  Google Scholar 

  72. Alpatova, A.; Kim, E.-S.; Dong, S.; Sun, N.; Chelme-Ayala, P.; El-Din, M.G.: Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: effects of operating conditions on membrane performance. Sep. Purif. Technol. 122, 170–182 (2014)

    Article  Google Scholar 

  73. Zoubeik, M., Henni, A.: Ultrafiltration of oil-in-water emulsion using a \(0.04\mu \text{m}\) silicon carbide membrane: Taguchi experimental design approach. Desalin. Water Treat. 62, 108–119 (2016)

  74. Beni, A.H.: Screening of microfiltration and ultrafiltration ceramic membranes for produced water treatment and testing of different cleaning methods. University of Regina, Regina (2014)

    Google Scholar 

  75. Zhou, J.-E.; Chang, Q.; Wang, Y.; Wang, J.; Meng, G.: Separation of stable oil–water emulsion by the hydrophilic nano-sized \({\text{ZrO}}_2\) modified \({\text{Al}}_2{\text{O}}_3\) microfiltration membrane. Sep. Purif. Technol. 75(3), 243–248 (2010)

    Article  Google Scholar 

  76. Yang, C.; Zhang, G.; Xu, N.; Shi, J.: Preparation and application in oil–water separation of \({\text{ZrO}}_2/\alpha -{\text{Al}}_2{\text{O}}_3\) MF membrane. J. Membr. Sci. 142(2), 235–243 (1998)

    Article  Google Scholar 

  77. Hu, X.; Yu, Y.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Chang, Q.; Song, L.: The improved oil/water separation performance of graphene oxide modified \({\text{Al}}_2{\text{O}}_3\) microfiltration membrane. J. Membr. Sci. 476, 200–204 (2015)

    Article  Google Scholar 

  78. Zhu, L.; Chen, M.; Dong, Y.; Tang, C.Y.; Huang, A.; Li, L.: A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Res. 90, 277–285 (2016)

    Article  Google Scholar 

  79. Kumar, R.V.; Ghoshal, A.K.; Pugazhenthi, G.: Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. J. Membr. Sci. 490, 92–102 (2015)

    Article  Google Scholar 

  80. Oh, S.J.; Kim, N.; Lee, T.Y.: Preparation and characterization of PVDF/\({\text{TiO}}_2\) organic–inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 345, 313–320 (2009)

    Google Scholar 

  81. Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N.: Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 315–333 (2013)

    Google Scholar 

  82. Allen, E.W.: Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J. Environ. Eng. Sci. 7(2), 123–138 (2008)

    Article  Google Scholar 

  83. Silalahi, S.H.; Leiknes, T.: Cleaning strategies in ceramic microfiltration membranes fouled by oil and particulate matter in produced water. Desalination 236(231), 160–169 (2009)

    Article  Google Scholar 

  84. Madaeni, S.S.; Gheshlaghi, A.; Rekabdar, F.: Membrane treatment of oily wastewater from refinery processes. Asia Pac. J. Chem. Eng. 8(1), 45–53 (2013)

  85. Hesampour, M.; Krzyzaniak, A.; Nyström, M.: The influence of different factors on the stability and ultrafiltration of emulsified oil in water. J. Membr. Sci. 325(1), 199–208 (2008)

    Article  Google Scholar 

  86. Reyhani, A.; Sepehrinia, K.; Seyed Shahabadi, S.M.; Rekabdar, F.; Gheshlaghi, A.: Optimization of operating conditions in ultrafiltration process for produced water treatment via Taguchi methodology. Desalin. Water Treat. 54(10), 2669–2680 (2015)

    Article  Google Scholar 

  87. Milić, J.K.; Petrinić, I.; Goršek, A.; Simonič, M.: Ultrafiltration of oil-in-water emulsion by using ceramic membrane: Taguchi experimental design approach. Cent. Eur. J. Chem. 12(2), 242–249 (2014)

    Article  Google Scholar 

  88. Zirehpour, A.; Rahimpour, A.; Jahanshahi, M.; Peyravi, M.: Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method. J. Environ. Manag. 132, 113–120 (2014)

    Article  Google Scholar 

  89. Salahi, A.; Mohammadi, T.: Oily wastewater treatment by ultrafiltration using Taguchi experimental design. Water Sci. Technol. 63(7), 1476–1484 (2011)

    Article  Google Scholar 

  90. Ohya, H.; Kim, J.; Chinen, A.; Aihara, M.; Semenova, S.; Negishi, Y.; Mori, O.; Yasuda, M.: Effects of pore size on separation mechanisms of microfiltration of oily water, using porous glass tubular membrane. J. Membr. Sci. 145(1), 1–14 (1998)

    Article  Google Scholar 

  91. Hu, B.; Scott, K.: Microfiltration of water in oil emulsions and evaluation of fouling mechanism. Chem. Eng. J. 136(2), 210–220 (2008)

    Article  Google Scholar 

  92. Nandi, B.; Uppaluri, R.; Purkait, M.: Treatment of oily waste water using low-cost ceramic membrane: flux decline mechanism and economic feasibility. Sep. Sci. Technol. 44(12), 2840–2869 (2009)

    Article  Google Scholar 

  93. Kawakatsu, T.; Kikuchi, Y.; Nakajima, M.: Visualization of microfiltration phenomena using microscope video system and silicon microchannels. J. Chem. Eng. Jpn. 29(2), 399–401 (1996)

    Article  Google Scholar 

  94. Matsumoto, Y.; Kawakatsu, T.; Nakajima, M.; Kikuchi, Y.: Visualization of filtration phenomena of a suspended solution including O/W emulsion or solid particle and membrane separation properties of the solution. Water Res. 33(4), 929–936 (1999)

    Article  Google Scholar 

  95. Darvishzadeh, T.; Tarabara, V.V.; Priezjev, N.V.: Oil droplet behavior at a pore entrance in the presence of crossflow: implications for microfiltration of oil–water dispersions. J. Membr. Sci. 447, 442–451 (2013)

    Article  Google Scholar 

  96. Li, H.; Fane, A.; Coster, H.; Vigneswaran, S.: Direct observation of particle deposition on the membrane surface during crossflow microfiltration. J. Membr. Sci. 149(1), 83–97 (1998)

    Article  Google Scholar 

  97. Zhang, Y.; Fane, A.; Law, A.: Critical flux and particle deposition of bidisperse suspensions during crossflow microfiltration. J. Membr. Sci. 282(1), 189–197 (2006)

    Article  Google Scholar 

  98. Tummons, E.N.; Tarabara, V.V.; Chew, J.W.; Fane, A.G.: Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. J. Membr. Sci. 500, 211–224 (2016)

    Article  Google Scholar 

  99. Abadi, S.R.H.; Sebzari, M.R.; Hemati, M.; Rekabdar, F.; Mohammadi, T.: Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265(261), 222–228 (2011)

    Article  Google Scholar 

  100. Nishimoto, S.; Bhushan, B.: Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. Rsc Adv. 3(3), 671–690 (2013)

    Article  Google Scholar 

  101. Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L.: Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21(6), 665–669 (2009)

    Article  Google Scholar 

  102. Liu, X.; Zhou, J.; Xue, Z.; Gao, J.; Meng, J.; Wang, S.; Jiang, L.: Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv. Mater. 24(25), 3401–3405 (2012)

    Article  Google Scholar 

  103. Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L.: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23(37), 4270–4273 (2011)

    Article  Google Scholar 

  104. Wen, Q.; Di, J.; Jiang, L.; Yu, J.; Xu, R.: Zeolite-coated mesh film for efficient oil–water separation. Chem. Sci. 4(2), 591–595 (2013)

    Article  Google Scholar 

  105. Rohrbach, K.; Li, Y.; Zhu, H.; Liu, Z.; Dai, J.; Andreasen, J.; Hu, L.: A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem. Commun. 50(87), 13296–13299 (2014)

    Article  Google Scholar 

  106. Brown, P.; Atkinson, O.; Badyal, J.: Ultrafast oleophobic–hydrophilic switching surfaces for antifogging, self-cleaning, and oil–water separation. ACS Appl. Mater. Interfaces 6(10), 7504–7511 (2014)

    Article  Google Scholar 

  107. Wang, Z.; Elimelech, M.; Lin, S.: Environmental applications of interfacial materials with special wettability. Environ. Sci. Technol. 50(5), 2132–2150 (2016)

    Article  Google Scholar 

  108. Wang, Z.; Jin, J.; Hou, D.; Lin, S.: Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation. J. Membr. Sci. 516, 113–122 (2016). doi:10.1016/j.memsci.2016.06.011

    Article  Google Scholar 

  109. Pashley, R.: Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 80(1), 153–162 (1981)

    Article  Google Scholar 

  110. Pashley, R.: DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci. 83(2), 531–546 (1981)

    Article  Google Scholar 

  111. Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  Google Scholar 

  112. Devi, D.A.; Smitha, B.; Sridhar, S.; Aminabhavi, T.: Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J. Membr. Sci. 262(1), 91–99 (2005)

    Article  Google Scholar 

  113. Chen, S.; Li, L.; Zhao, C.; Zheng, J.: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23), 5283–5293 (2010)

    Article  Google Scholar 

  114. Dudchenko, A.V.; Rolf, J.; Shi, L.; Olivas, L.; Duan, W.; Jassby, D.: Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: An experimental and theoretical study. ACS Nano 9(10), 9930–9941 (2015)

    Article  Google Scholar 

  115. Hamza, A.; Pham, V.; Matsuura, T.; Santerre, J.: Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications. J. Membr. Sci. 131(1), 217–227 (1997)

    Article  Google Scholar 

  116. Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C.: A modified mussel-inspired method to fabricate \({\text{TiO}}_2\) decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 506, 60–70 (2016)

    Article  Google Scholar 

  117. Zeng, J.; Guo, Z.: Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloids Surf. A 444, 283–288 (2014)

    Article  Google Scholar 

  118. Zuo, G.; Wang, R.: Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J. Membr. Sci. 447, 26–35 (2013). doi:10.1016/j.memsci.2013.06.053

    Article  Google Scholar 

  119. Van Oss, C.: Acid—base interfacial interactions in aqueous media. Colloids Surf. A 78, 1–49 (1993)

    Article  Google Scholar 

  120. Brant, J.A.; Childress, A.E.: Colloidal adhesion to hydrophilic membrane surfaces. J. Membr. Sci. 241(2), 235–248 (2004)

    Article  Google Scholar 

  121. Hoek, E.M.; Bhattacharjee, S.; Elimelech, M.: Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19(11), 4836–4847 (2003)

    Article  Google Scholar 

  122. Subramani, A.; Hoek, E.M.: Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 319(1), 111–125 (2008)

    Article  Google Scholar 

  123. Zhang, W.; Ding, L.; Luo, J.; Jaffrin, M.Y.; Tang, B.: Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review. Chem. Eng. J. 302, 446–458 (2016)

    Article  Google Scholar 

  124. Field, R.; Wu, D.; Howell, J.; Gupta, B.: Critical flux concept for microfiltration fouling. J. Membr. Sci. 100(3), 259–272 (1995)

    Article  Google Scholar 

  125. Jagannadh, S.N.; Muralidhara, H.: Electrokinetics methods to control membrane fouling. Ind. Eng. Chem. Res. 35(4), 1133–1140 (1996)

    Article  Google Scholar 

  126. Sarkar, B.; Pal, S.; Ghosh, T.B.; De, S.; DasGupta, S.: A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition. J. Membr. Sci. 311(1), 112–120 (2008)

    Article  Google Scholar 

  127. Li, C.; Song, C.; Tao, P.; Sun, M.; Pan, Z.; Wang, T.; Shao, M.: Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment. Sep. Purif. Technol. 168, 47–56 (2016)

    Article  Google Scholar 

  128. Huotari, H.M.; Huisman, I.H.; Trägårdh, G.: Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode. J. Membr. Sci. 156(1), 49–60 (1999)

    Article  Google Scholar 

  129. Dudchenko, A.V.; Rolf, J.; Russell, K.; Duan, W.; Jassby, D.: Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes. J. Membr. Sci. 468, 1–10 (2014)

    Article  Google Scholar 

  130. Akamatsu, K.; Yoshida, Y.; Suzaki, T.; Sakai, Y.; Nagamoto, H.; Nakao, S.: Development of a membrane-carbon cloth assembly for submerged membrane bioreactors to apply an intermittent electric field for fouling suppression. Sep. Purif. Technol. 88, 202–207 (2012)

    Article  Google Scholar 

  131. Wakeman, R.J.; Tarleton, E.S.: Membrane fouling prevention in crossflow microfiltration by the use of electric fields. Chem. Eng. Sci. 42(4), 829–842 (1987). doi:10.1016/0009-2509(87)80042-8

    Article  Google Scholar 

  132. Yang, Y.; Li, J.; Wang, H.; Song, X.; Wang, T.; He, B.; Liang, X.; Ngo, H.H.: An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment. Angew. Chem. Int. Ed. 50(9), 2148–2150 (2011)

    Article  Google Scholar 

  133. Geng, P.; Chen, G.: Magnéli \({\text{Ti}}_4{\text{O}}_7\) modified ceramic membrane for electrically-assisted filtration with antifouling property. J. Membr. Sci. 498, 302–314 (2016)

    Article  Google Scholar 

  134. Ghadimkhani, A.; Zhang, W.; Marhaba, T.: Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere 146, 379–384 (2016)

    Article  Google Scholar 

  135. Chen, D.; Weavers, L.K.; Walker, H.W.: Ultrasonic control of ceramic membrane fouling: effect of particle characteristics. Water Res. 40(4), 840–850 (2006)

    Article  Google Scholar 

  136. Wu, Z.; Chen, H.; Dong, Y.; Mao, H.; Sun, J.; Chen, S.; Craig, V.S.; Hu, J.: Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. J. Colloid Interface Sci. 328(1), 10–14 (2008)

    Article  Google Scholar 

  137. Takahashi, M.; Chiba, K.; Li, P.: Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111(6), 1343–1347 (2007)

    Article  Google Scholar 

  138. Liu, G.; Wu, Z.; Craig, V.S.: Cleaning of protein-coated surfaces using nanobubbles: an investigation using a quartz crystal microbalance. J. Phys. Chem. C 112(43), 16748–16753 (2008)

    Article  Google Scholar 

  139. Tian, J.-Y.; Xu, Y.-P.; Chen, Z.-L.; Nan, J.: Air bubbling for alleviating membrane fouling of immersed hollow-fiber membrane for ultrafiltration of river water. Desalination 260(1), 225–230 (2010)

    Article  Google Scholar 

  140. Salama, A.; Van Geel, P.J.: Flow and solute transport in saturated porous media: 2. Violating the continuum hypothesis. J. Porous Media 11(5), 421–441 (2008)

    Article  Google Scholar 

  141. Fouladitajar, A.; Ashtiani, F.Z.; Okhovat, A.; Dabir, B.: Membrane fouling in microfiltration of oil-in-water emulsions; a comparison between constant pressure blocking laws and genetic programming (GP) model. Desalination 329, 41–49 (2013)

    Article  Google Scholar 

  142. Burgess, C.J.; Lefley, M.: Can genetic programming improve software effort estimation? A comparative evaluation. Inf. Softw. Technol. 43(14), 863–873 (2001). doi:10.1016/S0950-5849(01)00192-6

    Article  Google Scholar 

  143. Okhovat, A.; Mousavi, S.M.: Modeling of arsenic, chromium and cadmium removal by nanofiltration process using genetic programming. Appl. Soft Comput. 12(2), 793–799 (2012). doi:10.1016/j.asoc.2011.10.012

    Article  Google Scholar 

  144. Shokrkar, H.; Salahi, A.; Kasiri, N.; Mohammadi, T.: Prediction of permeation flux decline during MF of oily wastewater using genetic programming. Chem. Eng. Res. Des. 90(6), 846–853 (2012)

    Article  Google Scholar 

  145. Lee, T.-M.; Oh, H.; Choung, Y.-K.; Oh, S.; Jeon, M.; Kim, J.H.; Nam, S.H.; Lee, S.: Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming. Desalination 247(1), 285–294 (2009)

    Article  Google Scholar 

  146. Salama, A.; Van Geel, P.J.: Flow and solute transport in saturated porous media: 1. The continuum hypothesis. J. Porous Media 11(4), 403–413 (2008)

    Article  Google Scholar 

  147. Ahmed, S.; Seraji, M.T.; Jahedi, J.; Hashib, M.: Application of CFD for simulation of a baffled tubular membrane. Chem. Eng. Res. Des. 90(5), 600–608 (2012)

    Article  Google Scholar 

  148. Asadi Tashvigh, A.; Fouladitajar, A.; Zokaee Ashtiani, F.: Modeling concentration polarization in crossflow microfiltration of oil-in-water emulsion using shear-induced diffusion. CFD and experimental studies. Desalination 357, 225–232 (2015). doi:10.1016/j.desal.2014.12.001

    Article  Google Scholar 

  149. Jalilvand, Z.; Ashtiani, F.Z.; Fouladitajar, A.; Rezaei, H.: Computational fluid dynamics modeling and experimental study of continuous and pulsatile flow in flat sheet microfiltration membranes. J. Membr. Sci. 450, 207–214 (2014)

    Article  Google Scholar 

  150. Pak, A.; Mohammadi, T.; Hosseinalipour, S.; Allahdini, V.: CFD modeling of porous membranes. Desalination 222(1), 482–488 (2008)

    Article  Google Scholar 

  151. Rahimi, M.; Madaeni, S.; Abbasi, K.: CFD modeling of permeate flux in cross-flow microfiltration membrane. J. Membr. Sci. 255(1), 23–31 (2005)

    Article  Google Scholar 

  152. Lotfiyan, H.; Zokaee Ashtiani, F.; Fouladitajar, A.; Armand, S.B.: Computational fluid dynamics modeling and experimental studies of oil-in-water emulsion microfiltration in a flat sheet membrane using Eulerian approach. J. Membr. Sci. 472, 1–9 (2014). doi:10.1016/j.memsci.2014.08.036

    Article  Google Scholar 

  153. Li, F.; Meindersma, W.; De Haan, A.; Reith, T.: Optimization of commercial net spacers in spiral wound membrane modules. J. Membr. Sci. 208(1), 289–302 (2002)

    Article  Google Scholar 

  154. Liang, Y.; Chapman, M.; Weihs, G.F.; Wiley, D.: CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J. Membr. Sci. 470, 378–388 (2014)

    Article  Google Scholar 

  155. Liang, Y.; Weihs, G.F.; Wiley, D.: CFD modelling of electro-osmotic permeate flux enhancement in spacer-filled membrane channels. J. Membr. Sci. 507, 107–118 (2016)

    Article  Google Scholar 

  156. Lee, Y.; Clark, M.M.: Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Membr. Sci. 149(2), 181–202 (1998). doi:10.1016/S0376-7388(98)00177-X

    Article  Google Scholar 

  157. Darvishzadeh, T.; Priezjev, N.V.: Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions. J. Membr. Sci. 423, 468–476 (2012)

    Article  Google Scholar 

  158. Reyhani, A.; Hemmati, M.: Wastewater treatment by ultrafiltration system, considering the effects of operating conditions: experimental and modeling. Desalin. Water Treat. 52(34–36), 6282–6294 (2014). doi:10.1080/19443994.2013.815587

    Article  Google Scholar 

  159. Nandi, B.K.; Moparthi, A.; Uppaluri, R.; Purkait, M.K.: Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models. Chem. Eng. Res. Des. 88(7), 881–892 (2010). doi:10.1016/j.cherd.2009.12.005

    Article  Google Scholar 

  160. Guadix, A.; Zapata, J.E.; Almecija, M.C.; Guadix, E.M.: Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks. Desalination 250(3), 1118–1120 (2010). doi:10.1016/j.desal.2009.09.121

    Article  Google Scholar 

  161. Rai, P.; Majumdar, G.C.; DasGupta, S.; De, S.: Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network. J. Food Eng. 71(3), 273–281 (2005). doi:10.1016/j.jfoodeng.2005.02.003

    Article  Google Scholar 

  162. Sarkar, B.; Sengupta, A.; De, S.; DasGupta, S.: Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration—a neural network approach. Sep. Purif. Technol. 65(3), 260–268 (2009). doi:10.1016/j.seppur.2008.10.032

    Article  Google Scholar 

  163. Bowen, W.R.; Jones, M.G.; Yousef, H.N.S.: Dynamic ultrafiltration of proteins—a neural network approach. J. Membr. Sci. 146(2), 225–235 (1998). doi:10.1016/S0376-7388(98)00108-2

    Article  Google Scholar 

  164. Teodosiu, C.; Pastravanu, O.; Macoveanu, M.: Neural network models for ultrafiltration and backwashing. Water Res. 34(18), 4371–4380 (2000). doi:10.1016/S0043-1354(00)00217-7

    Article  Google Scholar 

  165. Liu, Q.-F.; Kim, S.-H.; Lee, S.: Prediction of microfiltration membrane fouling using artificial neural network models. Sep. Purif. Technol. 70(1), 96–102 (2009)

    Article  Google Scholar 

  166. Salama, A.; Zoubeik, M.; Henni, A.: A multi-continuum approach for the problem of filtration of oily-water systems across thin flat membranes: I. The framework. AIChE J. (2017). doi:10.1002/aic.15784

  167. Zsirai, T.; Al-Jaml, A.; Qiblawey, H.; Al-Marri, M.; Ahmed, A.; Bach, S.; Watson, S.; Judd, S.: Ceramic membrane filtration of produced water: impact of membrane module. Sep. Purif. Technol. 165, 214–221 (2016)

    Article  Google Scholar 

  168. Li, Q.; Yan, Z.-Q.; Wang, X.-L.: A poly(sulfobetaine) hollow fiber ultrafiltration membrane for the treatment of oily wastewater. Desalin. Water Treat. 57(24), 1–18 (2015)

    Google Scholar 

  169. Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K.: Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 325(1), 427–437 (2008). doi:10.1016/j.memsci.2008.08.007

    Article  Google Scholar 

  170. Jamshidi Gohari, R.; Korminouri, F.; Lau, W.J.; Ismail, A.F.; Matsuura, T.; Chowdhury, M.N.K.; Halakoo, E.; Jamshidi Gohari, M.S.: A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion. Sep. Purif. Technol. 150, 13–20 (2015). doi:10.1016/j.seppur.2015.06.031

    Article  Google Scholar 

  171. Yuliwati, E.; Ismail, A.F.: Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273(1), 226–234 (2011). doi:10.1016/j.desal.2010.11.023

    Article  Google Scholar 

  172. Luo, L.; Han, G.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C.: Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. J. Membr. Sci. 476, 162–170 (2015). doi:10.1016/j.memsci.2014.11.035

    Article  Google Scholar 

  173. Su, Y.; Zhao, Q.; Liu, J.; Zhao, J.; Li, Y.; Jiang, Z.: Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalin. Water Treat. 55(2), 304–314 (2015). doi:10.1080/19443994.2014.918903

    Article  Google Scholar 

  174. Li, J.-J.; Zhu, L.-T.; Luo, Z.-H.: Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J. 287, 474–481 (2016)

    Article  Google Scholar 

  175. Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C.: A modified mussel-inspired method to fabricate \({\text{TiO}}_2\) decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 506, 60–70 (2016). doi:10.1016/j.memsci.2016.01.053

    Article  Google Scholar 

  176. Gao, S.J.; Zhu, Y.Z.; Zhang, F.; Jin, J.: Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions. J. Mater. Chem. A 3(6), 2895–2902 (2015)

    Article  Google Scholar 

  177. Obaid, M.; Barakat, N.A.; Fadali, O.; Motlak, M.; Almajid, A.A.; Khalil, K.A.: Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem. Eng. J. 259, 449–456 (2015)

    Article  Google Scholar 

  178. Kumar, S.; Mandal, A.; Guria, C.: Synthesis, characterization and performance studies of polysulfone and polysulfone/polymer-grafted bentonite based ultrafiltration membranes for the efficient separation of oil field oily wastewater. Process Saf. Environ. Prot. 102, 214–228 (2016)

    Article  Google Scholar 

  179. Venkatesh, K.; Arthanareeswaran, G.; Bose, A.C.: PVDF mixed matrix nano-filtration membranes integrated with 1D-PANI/\({\text{TiO}}_2\) NFs for oil–water emulsion separation. RSC Adv. 6(23), 18899–18908 (2016)

    Article  Google Scholar 

  180. Liu, M.; Li, J.; Guo, Z.: Polyaniline coated membranes for effective separation of oil-in-water emulsions. J. Colloid Interface Sci. 467, 261–270 (2016). doi:10.1016/j.jcis.2016.01.024

    Article  Google Scholar 

  181. Muppalla, R.; Jewrajka, S.K.; Reddy, A.V.R.: Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Sep. Purif. Technol. 143, 125–134 (2015). doi:10.1016/j.seppur.2015.01.031

    Article  Google Scholar 

  182. Zhang, F.; Gao, S.; Zhu, Y.; Jin, J.: Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. J. Membr. Sci. 513, 67–73 (2016). doi:10.1016/j.memsci.2016.04.020

    Article  Google Scholar 

  183. Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B.S.; Chu, B.: High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7), 2434–2441 (2006)

    Article  Google Scholar 

  184. Zhang, W.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L.: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25(14), 2071–2076 (2013)

    Article  Google Scholar 

  185. You, H.; Yang, Y.; Li, X.; Zhang, K.; Wang, X.; Zhu, M.; Hsiao, B.S.: Low pressure high flux thin film nanofibrous composite membranes prepared by electrospraying technique combined with solution treatment. J. Membr. Sci. 394, 241–247 (2012)

    Article  Google Scholar 

  186. Chen, P.-C.; Xu, Z.-K.: Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep. 3, 2776 (2013)

    Article  Google Scholar 

  187. Jin, L.; Yu, S.; Shi, W.; Yi, X.; Sun, N.; Ge, Y.; Ma, C.: Synthesis of a novel composite nanofiltration membrane incorporated \({\text{SiO}}_2\) nanoparticles for oily wastewater desalination. Polymer 53(23), 5295–5303 (2012)

    Article  Google Scholar 

  188. Pan, Y.; Wang, T.; Sun, H.; Wang, W.: Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Sep. Purif. Technol. 89, 78–83 (2012)

    Article  Google Scholar 

  189. Emani, S.; Uppaluri, R.; Purkait, M.K.: Microfiltration of oil–water emulsions using low cost ceramic membranes prepared with the uniaxial dry compaction method. Ceram. Int. 40(1), 1155–1164 (2014)

    Article  Google Scholar 

  190. Zsirai, T.; Al-Jaml, A.K.; Qiblawey, H.; Al-Marri, M.; Ahmed, A.; Bach, S.; Watson, S.; Judd, S.: Ceramic membrane filtration of produced water: impact of membrane module. Sep. Purif. Technol. 165, 214–221 (2016). doi:10.1016/j.seppur.2016.04.001

    Article  Google Scholar 

  191. Suresh, K.; Pugazhenthi, G.: Development of ceramic membranes from low-cost clays for the separation of oil–water emulsion. Desalin. Water Treat. 57(5), 1927–1939 (2016)

    Article  Google Scholar 

  192. Suresh, K.; Srinu, T.; Ghoshal, A.K.; Pugazhenthi, G.: Preparation and characterization of \({\text{TiO}}_2\) and \(\gamma {\text{-Al}}_2{\text{O}}_3\) composite membranes for the separation of oil-in-water emulsions. RSC Adv. 6(6), 4877–4888 (2016)

    Article  Google Scholar 

  193. Chen, T.; Duan, M.; Fang, S.: Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater. Ceram. Int. 42(7), 8604–8612 (2016)

    Article  Google Scholar 

  194. Chang, Q.; Zhou, J.-E.; Wang, Y.; Liang, J.; Zhang, X.; Cerneaux, S.; Wang, X.; Zhu, Z.; Dong, Y.: Application of ceramic microfiltration membrane modified by nano-\({\text{TiO}}_2\) coating in separation of a stable oil-in-water emulsion. J. Membr. Sci. 456, 128–133 (2014)

    Article  Google Scholar 

  195. Lu, D.; Cheng, W.; Zhang, T.; Lu, X.; Liu, Q.; Jiang, J.; Ma, J.: Hydrophilic \({\text{Fe}}_2{\text{O}}_3\) dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion. Sep. Purif. Technol. 165, 1–9 (2016)

    Article  Google Scholar 

  196. Tan, B.Y.L.; Juay, J.; Liu, Z.; Sun, D.: Flexible hierarchical \({\text{TiO}}_2/{\text{Fe}}_2{\text{O}}_3\) composite membrane with high separation efficiency for surfactant-stabilized oil–water emulsions. Chem. Asian J. 11(4), 561–567 (2015)

  197. Weschenfelder, S.E.; Louvisse, A.M.; Borges, C.P.; Meabe, E.; Izquierdo, J.; Campos, J.C.: Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units. J. Petrol. Sci. Eng. 131, 51–57 (2015)

    Article  Google Scholar 

  198. Rahimi, M.; Madaeni, S.; Abolhasani, M.; Alsairafi, A.A.: CFD and experimental studies of fouling of a microfiltration membrane. Chem. Eng. Process. 48(9), 1405–1413 (2009)

  199. Alexiadis, A.; Wiley, D.; Vishnoi, A.; Lee, R.; Fletcher, D.; Bao, J.: CFD modelling of reverse osmosis membrane flow and validation with experimental results. Desalination 217(1), 242–250 (2007)

    Article  Google Scholar 

  200. Tashvigh, A.A.; Fouladitajar, A.; Ashtiani, F.Z.: Modeling concentration polarization in crossflow microfiltration of oil-in-water emulsion using shear-induced diffusion. CFD and experimental studies. Desalination 357, 225–232 (2015)

    Article  Google Scholar 

  201. Zare, M.; Ashtiani, F.Z.; Fouladitajar, A.: CFD modeling and simulation of concentration polarization in microfiltration of oil–water emulsions; application of an Eulerian multiphase model. Desalination 324, 37–47 (2013)

    Article  Google Scholar 

  202. Lotfiyan, H.; Ashtiani, F.Z.; Fouladitajar, A.; Armand, S.B.: Computational fluid dynamics modeling and experimental studies of oil-in-water emulsion microfiltration in a flat sheet membrane using Eulerian approach. J. Membr. Sci. 472, 1–9 (2014)

    Article  Google Scholar 

  203. Rezakazemi, M.; Shahverdi, M.; Shirazian, S.; Mohammadi, T.; Pak, A.: CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem. Eng. J. 168(1), 60–67 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Henni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoubeik, M., Ismail, M., Salama, A. et al. New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review. Arab J Sci Eng 43, 2093–2118 (2018). https://doi.org/10.1007/s13369-017-2690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2690-0

Keywords

Navigation