Skip to main content
Log in

Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the last three decades, there is considerable interest in computer-aided diagnosis systems for dealing with different diseases. Recently, these computer-aided diagnosis systems use deep learning architectures for analysis and classification of medical images. The previous techniques consider the hand-designed feature extraction approaches that depend on low-level image features, such as edges, color, and texture. Unlike these techniques, in this paper, a feature representation with a stacked sparse auto-encoder that is based on deep learning technology is proposed. The stacked sparse auto-encoder is trained in an unsupervised way. It learns the high-level features of the input pixels of unlabeled images that differentiate among different images that contain the various focal liver diseases. The proposed system consists of the preprocessing stage followed by the segmentation of the liver lesions using the level set method and Fuzzy c-means clustering algorithm. The stacked sparse auto-encoder extracts the high-level features representation from pixels of the segmented images, which are considered as the inputs for the classifier. Finally, a softmax layer classifies the different focal liver diseases by selecting the highest probabilities of each class. Using our proposed system, we have got an overall classification accuracy of 97.2%. Our proposed system is compared with three state-of-the-art techniques which are multi-support vector machine, K-Nearest Neighbor, and Naive Bayes. The experimental results show that the accuracy of classification of our proposed system outperforms the three state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, P.; Malik, S.; Sehgal, S.; Pruthi, J.: Computer aided diagnosis based on medical image processing and artificial intelligence methods. Int. J. Inf. Comput. Technol. 3(9), 887–892 (2013)

    Google Scholar 

  2. Tang, J.; Agaian, S.; Thompson, I.: Guest editorial: computer-aided detection or diagnosis (CAD) systems. IEEE Syst. J. 8(3), 907–909 (2014). doi:10.1109/JSYST.2014.2317378

    Article  Google Scholar 

  3. Litjens, G.; Debats, O.; Barentsz, J.; Karssemeijer, N.; Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33(5), 1083–1092 (2014). doi:10.1109/TMI.2014.2303821

  4. Tarek Hassan, M.; Elmogy, M.; Sallam, E.: International Journal of Computer Applications. Med. Image Segm. Liver Dis. A Surv. 118(19), 38–44 (2015)

  5. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 3 (2014). doi:10.1017/atsip.2013.9

  6. Wankhede, S.B.: Analytical study of neural network techniques: SOM, MLP, and classifier-A survey. IOSR J. Comput. Eng. (IOSR-JCE) 16(3), 86–92 (2014)

  7. Bianchini, M.; Scarselli, F.: On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Trans. Neural Netw. Learn. Syst. 25(8), 1553–1565 (2014). doi:10.1109/TNNLS.2013.2293637

    Article  Google Scholar 

  8. Suk, H-II.; Shen, D.: Deep Learning-Based Feature Representation for AD/MCI Classification, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 583–590, Springer, Heidelberg (2013)

  9. Deng, L.; Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014). doi:10.1561/2000000039

    Article  MathSciNet  MATH  Google Scholar 

  10. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bengio, Y.; Courville, A.; Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  13. LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015). doi:10.1038/nature14539

    Article  Google Scholar 

  14. Song, HA.; Lee, SY.: Hierarchical Representation Using NMF, Neural Information Processing, Vol. 8226 of the series Lectures Notes in Computer Science, pp. 466–473, Springer, Heidelberg (2013)

  15. Deng, L.; Seltzer, M.; Yu, D.; Acero, A.; Mohamed, A.; Hinton, G.: Binary coding of speech spectrograms using a deep auto-encoder. In: Interspeech 2010, pp. 1692–1695, Makuhari, Chiba, Japan, 26–30 Sept 2010

  16. Salakhutdinov, R.; Hinton, G.: A better way to pretrain Deep Boltzmann Machines. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), pp. 2447–2455. Curran Associates Inc., USA (2012)

  17. Salakhutdinov, R.; Hinton, G.: Deep Boltzmann machines. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 5 of JMLR: W&CP 5, pp. 448–455, Clearwater Beach, Florida (2009)

  18. Srivastava, N.; Salakhutdinov, R.R.: Multimodal learning with deep Boltzmann machines. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 2222–2230. Curran Associates Inc. (2012)

  19. Fischer, A.; Igel, C.: An introduction to restricted Boltzmann machines. CIARP 2012, LNCS 7441, pp. 14–36, Springer, Heidelberg (2012)

  20. Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.A.; Senior, A.; Tucker, P.; Yang, K.; Ng, A.Y.: Large scale distributed deep networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), pp.1223–1231. Curran Associates Inc., USA (2012)

  21. Krizhevsky, A.; Sutskever, I.; Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

  22. Abdel-Hamid, O.; Deng, L.; Yu, D.: Exploring convolutional neural network structures and optimization for speech recognition. In: Interspeech, pp. 3366–3370. ISCA (2013)

  23. Hinton, G.E.; Osindero, S.; Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.: Multimodal deep learning. Proc, ICML (2011)

    Google Scholar 

  25. LeCun, Y.; Chopra, S.; Ranzato, M.; Huang, F.: Energy-based models in document recognition and computer vision. Proc. Int. Conf. Doc. Anal. Recogn, ICDAR (2007)

    Book  Google Scholar 

  26. Wang, W.; Huang, Y.; Wang, Y.; Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 496-503, (2014)

  27. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, (2007)

  28. Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: IEEE \(11^{{\rm th}}\) International Symposium on Biomedical Imaging, pp. 1015-1018, (2014)

  29. Reda, I.; Shalaby, A.; Abou El-Ghar, M.; Khalifa, F.; Elmogy, M.; Aboulfotouh, A.; Asl, E.-H.; El-Baz, A.; Keynton, R.: A new NMF-Autoencoder based CAD system for early diagnosis of prostate cancer. In: International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’16), Prague, Czech Republic, (2016)

  30. Wu, K.; Chen, X.; Ding, M.: Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik - Int. J. Light Electron Opt. 125(15), 4057–4063 (2014). doi:10.1016/j.ijleo.2014.01.114

    Article  Google Scholar 

  31. Mittal, D.; Kumar, V.; Suresh, C.; Saxenaa, K.N.; Kalra, N.: Neural network based focal liver lesion diagnosis using ultrasound images. Comput. Med. Imaging Graph. 35, 315–323 (2011)

    Article  Google Scholar 

  32. Tsiotsios, C.; Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recogn. 46(5), 1369–1381 (2013)

  33. Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A.: Stacked Sparse Autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016). doi:10.1109/TMI.2015.2458702

  34. Shu, M.; Fyshe, A.: Sparse autoencoders for word decoding from magnetoencephalography. In: Proceedings of the \(3^{{\rm rd}}\) NIPS Workshop on Machine Learning and Interpretation in NeuroImaging (MLINI), (2013)

  35. Hassan, TM.; Elmogy, M.; Sallam, E.: A classification framework for diagnosis of focal liver diseases. In: IEEE \(10{{\rm th}}\) International Conference on Computer Engineering and Systems (ICCES), pp. 395-401, (2015)

  36. Bergstra, J.; Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Elmogy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, T.M., Elmogy, M. & Sallam, ES. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arab J Sci Eng 42, 3127–3140 (2017). https://doi.org/10.1007/s13369-016-2387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2387-9

Keywords

Navigation