Skip to main content
Log in

Deciphering Groundwater Potential Zones Using Geospatial Technology: A Study in Bankura Block I and Block II, Bankura District, West Bengal

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Integration of remote sensing data and geographical information system (GIS) for exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring and conserving groundwater resources. In the present paper, groundwater potential zones for the assessment of groundwater availability in Bankura Block I and Block II, Bankura District, West Bengal, has been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C—LISS III satellite imagery are used to prepare various thematic layers, e.g., hydrogeomorphology, lithology, slope and lineament density were transformed to raster data using feature to raster converter tool of software like MicroImages TNT mips 2012. The raster maps of these factors are allocated to a fixed score and weight computed from multi-influencing factor technique. Each weighted layer is statistically computed to get the groundwater potential zones. Weighted overlay modelling technique was used to develop a groundwater potential model with three weighted and scored parameters. Although the area is characterized by hard rock, it has groundwater prospective zones due to fracturing, weathering and the presence of valley fills overlying a planation surface. The area has been categorized into four distinct zones—very good, good, fair and poor. Very good groundwater potential zones constitute 19.81% of the total block area, good groundwater potential zones occupy majority of the block, covering approximately 30.83%, and the fair potential zones occupy about 33.08% of the total block, poor potential zones occupy very small portion 16.28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson T.J.: Remote Sensing of soil moisture: implications for groundwater recharge. Hydrogeol. J. 10(1), 40–51 (2002)

    Article  Google Scholar 

  2. Anbazhagan S., Ramasamy S.M., Gupta D.S.: Remote sensing and GIS for artificial recharge study, runoff estimation and planning in Ayyar basin, Tamil Nadu, India. Environ. Geol. 48, 158–170 (2005)

    Article  Google Scholar 

  3. Chowdhury A., Jha M.K., Chowdary V.M., Mal B.C.: Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens. 30(1), 231–250 (2009)

    Article  Google Scholar 

  4. Jaiswal R.K., Mukherjee S., Krishnamurthy J., Saxena R.: Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int. J. Remote Sens. 24(5), 993–1008 (2003)

    Article  Google Scholar 

  5. Prasad R.K., Mondal N.C., Banerjee P., Nandakumar M.V., Singh V.S.: Deciphering potential groundwater zone in hard rock through the application of GIS. Environ. Geol. 55, 467–475 (2008)

    Article  Google Scholar 

  6. Reddy PR., Vinod Kumar K., Seshadri K.: Use of IRS-1C data in groundwater studies. Curr. Sci. 70(7), 600–605 (1996)

    Google Scholar 

  7. Sahai B., Bhattacharya A., Hegde V.S.: IRS-IA application for groundwater targetting. Curr. Sci. 61(3,4), 172–179 (1991)

    Google Scholar 

  8. Srivastava P.K., Bhattacharya A.K.: Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int. J. Remote Sens. 27(20), 4599–4620 (2006)

    Article  Google Scholar 

  9. Kumar P.K., Gopinath G., Seralathan P.: Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. Int. J. Remote Sens. 28(24), 5583–5601 (2007)

    Article  Google Scholar 

  10. Sreedevi P.D., Subrahmanya K., Ahmed S.: Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeol. J. 13, 534–543 (2005)

    Article  Google Scholar 

  11. Rashid, M.; Lone, M.A.; Ahmed, S.: Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environ. Monit. Assess. doi:10.1007/s10661-011-2305-2 (2011)

  12. Dar I.A., Sankar K., Dar M.A.: Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environ. Monit. Assess. 173, 597–610 (2011). doi:10.1007/s10661-010-1407-6

  13. Krishna Kumar, S.; Chandrasekar, N.; Seralathan, P.; Godson, P.S.; Magesh, N.S.: Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India. Environ. Monit. Assess. doi:10.1007/s10661-011-2249-6 (2011)

  14. Magesh N.S., Chandrasekar N., Vetha Roy D.: Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuar. Coast. Shelf Sci. 92, 618–628 (2011)

    Article  Google Scholar 

  15. Das S., Behera S.C., Kar A., Narendra P., Guha S.: Hydrogeomorphological mapping in groundwater exploration using remotely sensed data case study in Keonjhar District, Orissa. J. Indian Soc. Remote Sens. 25, 247–259 (1997)

    Article  Google Scholar 

  16. Thomas A., Sharma P.K., Sharma M.K., Sood A.: Hydrogeomorphological mapping in assessing groundwater by using remote sensing data case study in Lehra Gage Block, Sangrur district, Punjab. J. Indian Soc. Remote Sens. 27, 31–42 (1999)

    Article  Google Scholar 

  17. Harinarayana P., Gopalakrishna G.S., Balasubramanian A.: Remote sensing data for groundwater development and management in Keralapura watersheds of Cauvery basin, Karnataka, India. Indian Mineral. 34, 11–17 (2000)

    Google Scholar 

  18. Chowdhury A., Jha M.K., Chowdary V.M.: Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 59, 1209–1222 (2010)

    Article  Google Scholar 

  19. Nag S.K.: Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. J. Indian Soc. Remote Sens. 33(4), 522–529 (2005)

    Article  Google Scholar 

  20. Murthy K.S.R.: Groundwater potential in a semi-arid region of Andhra Pradesh: a geographical information system approach. Int. J. Remote Sens. 21(9), 1867–1884 (2000)

    Article  Google Scholar 

  21. Leblanc, M.; Leduc, C.; Razack, M.; Lemoalle, J.; Dagorne, D.; Mofor, L.: Application of remote sensing and GIS for groundwater modeling of large semiarid areas: example of the Lake Chad Basin, Africa. In: Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France. Red Books Series, 278, pp. 186–192. IAHS, Wallingford (2003)

  22. Tweed S.O., Leblanc M., Webb J.A., Lubczynski M.W.: Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J. 15, 75–96 (2007)

    Article  Google Scholar 

  23. Kamal A.S.M.M., Midorikawa S.: GIS-based geomorphological mapping using remote sensing data and supplementary geoinformation: a case study of the Dhaka city area, Bangladesh. Int. J. Appl. Earth Obs. Geoinf. 6, 111–125 (2004)

    Article  Google Scholar 

  24. Gustavsson M., Kolstrup E., Seijmonsbergen A.C.: A new symbol and GIS based detailed geomorphological mapping system: renewal of a scientific discipline for understanding landscape development. Geomorphology 77, 90–111 (2006)

    Article  Google Scholar 

  25. Singh A.K., Parkash B., Choudhury P.R.: Integrated use of SRM, Landsat ETM+data and 3D perspective views to identify the tectonic geomorphology of Dehradun valley, India. Int. J. Remote Sens. 28(11), 2414–2430 (2007)

    Google Scholar 

  26. Saraf A.K., Choudhury P.R.: Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens. 19(10), 1825–1841 (1998)

    Article  Google Scholar 

  27. Jasrotia, A.S.; Kumar, R.; Saraf, A. K.: Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. Int. J. Remote Sens. 28(22), 5019–5036

  28. Chenini I., Benmammou A., Elmay M.: Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in central Tunisia (Maknassy Basin). Int. J. Water Resour. Manag. 24, 921–939 (2010)

    Article  Google Scholar 

  29. Horton R.: Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56, 275–370 (1945)

    Article  Google Scholar 

  30. Kumar A., Srivastava S.K.: Geomorphological units, their geohydrological characteristics and vertical electrical sounding response near Munger, Bihar. J. Indian Soc. Remote Sens. 19(4), 205–215 (1991)

    Article  MathSciNet  Google Scholar 

  31. Sharma D., Jugran D.K.: Hydromorphological studies around Pinjaur-Kala Amb area, Ambala district (Hariana), and Sirmour district (Himachal Pradesh). J. Indian Soc. Remote Sens. 29(4), 281–286 (1992)

    Google Scholar 

  32. Chatterjee R.S., Bhattachaya A.K.: Delineation of drainage pattern of a coal basin related inference using satellite remote sensing techniques. Asia Pac. Remote Sens. J. 1, 107–114 (1995)

    Google Scholar 

  33. Tiwari A., Rai B.: Hydrogeological mapping for groundwater prospecting using Landsat–MSS images: a case study of part of Dhanbad district. Bihar. J. Indian Soc. Remote Sens. 24(4), 281–286 (1996)

    Article  Google Scholar 

  34. Lilesand T.M.: Remote Sensing and Image Interpretation. Wiley, New York (1989)

    Google Scholar 

  35. Drury S.A.: Image Interpretation in Geology, 2nd edn. Chapman & Hall, London (1990)

    Google Scholar 

  36. Gupta R.P.: Remote Sensing Geology. Springer, Berlin (1991)

    Book  Google Scholar 

  37. Magesh N.S., Chandrasekar N., Soundranayagam J.P.: Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu India: a GIS approach. Environ. Earth Sci. 64, 373–381 (2011)

    Article  Google Scholar 

  38. Solomon, S.: Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Doctoral Dissertation, Environmental and Natural Resources Information Systems, Royal Institute of Technology, SE-100 44 Stockholm, Sweden (2003)

  39. Subba Rao N.: Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environ. Geol. 49, 413–429 (2006)

    Article  Google Scholar 

  40. Sener E., Davraz A., Ozcelik M.: An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol. J. 13, 826–834 (2005)

    Article  Google Scholar 

  41. Subba Rao N.: Factors affecting optimum development of groundwaters in crystalline terrain of the Eastern Ghats, Visakhapatnam area, Andhra Pradesh, India. J. Geol. Soc. India 40(5), 462–467 (1992)

    Google Scholar 

  42. Nag, S. K.; Ghosh, P.: Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS Techniques. Environ. Earth Sci. doi:10.1007/s12665-012-1713-0 (2012)

  43. Saraf, A.K.; Choudhury, P.R.: Integrated application of remote sensing and GIS groundwater 427 exploration in hard rock terrain. In: Proceedings of International Symposium on Emerging trends in Hydrology, vol. 1, pp. 435–442. Department 428 of Hydrology, Roorkee, September 25–27 1997

  44. Sarma, B.; Saraf, A.K.: Study of landuse–groundwater relationship using an integrated remote sensing and GIS approach. Map Asia 2002. http://www.gisdevelopment.ne (2002)

  45. Muthukrishnan, A.; Manjunatha, V.: Role of remote sensing and GIS in artificial recharge of the groundwater aquifer in the Shanmuganadi sub water shed in the Cauvery River Basin, Tiruchirappalli District, Tamil Nadu. GIS Ideas, December 4–6, 2008

  46. Bonham-Carter G.F.: Geographic Information Systems for Geoscientists: Modelling with GIS. Elseviers, Amsterdam (1994)

    Google Scholar 

  47. Gary M., Mcafee R., Wolf C.L.: Glossary of Geology. American Geological Institute, Washington (1972)

    Google Scholar 

  48. Hobbs W.H.: Lineaments of the Atlantic border region. Geol. Soc. Am. Bull. 15, 483–506 (1904)

    Google Scholar 

  49. Hobbs W.H.: Earth Features and Their Meaning: An Introduction to Geology for the Student and General Reader. Macmillan Co., New York (1912)

    Google Scholar 

  50. O’Leary D.W., Freidman J.D., Pohn H.A.: Lineaments, linear, lineation-some proposed new standards for old terms. Geol. Soc. Am. Bull. 87, 1463–1469 (1976)

    Article  Google Scholar 

  51. Subba Rao N., Chakradhar G.K.J., Srinivas V.: Identification of groundwater potential zones using RS techniques in and around Guntur Town, A.P., India. J. Indian Soc. Remote Sens. 29(1&2), 69–78 (2001)

    Google Scholar 

  52. Lattman L.H., Parizek R.R.: Relationship between fracture traces and the occurrence of ground water in carbonate rocks. J. Hydrol. 2, 73–91 (1964)

    Article  Google Scholar 

  53. Mabee S.B., Hardcastle K.C., Wise D.U.: A method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies. Ground Water 32(6), 884–894 (1994)

    Article  Google Scholar 

  54. Magowe M., Carr J.R.: Relationship between lineaments and ground water occurrence in western Botswana. Ground Water 37(2), 282–286 (1999)

    Article  Google Scholar 

  55. Fernandes A.J., Rudolph D.L.: The influence of Cenozoic tectonics on the groundwater production capacity of fractured zones: A case study in Sao Paulo, Brazil. Hydrogeol. J. 9, 151–167 (2001)

    Article  Google Scholar 

  56. Hardcastle K.C.: Photolineament factor: a new computer-aided method for remotely sensing the degree to which bedrock is fractured. Photogramm. Eng. Remote Sens. 61(6), 739–747 (1995)

    Google Scholar 

  57. Moore G., Waltz F.A.: Objective procedure for lineament enhancement and extraction. Photogramm. Eng. Remote Sens. 49, 641–647 (1986)

    Google Scholar 

  58. Choudhury, P.R.: Integrated remote sensing and GIS techniques for groundwater studies in Part of Betwa Basin Ph.D. Thesis (unpublished), Department of Earth Sciences, University of Roorkee, India (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S.K., Ray, S. Deciphering Groundwater Potential Zones Using Geospatial Technology: A Study in Bankura Block I and Block II, Bankura District, West Bengal. Arab J Sci Eng 40, 205–214 (2015). https://doi.org/10.1007/s13369-014-1511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1511-y

Keywords

Navigation