Skip to main content
Log in

Comparative Study of Electrochemical Methods for Determination of Methanol Permeation Through Proton-Exchange Membranes

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, methanol permeation rates were measured using various electrochemical techniques, namely, cyclic voltammetry, chronoamperometry and potentiometry. For all the methods, a Nafion® 117 membrane was used to measure and evaluate methanol crossover rates. The purpose of this study is to compare the methanol permeation data obtained using the above-mentioned techniques under identical conditions, compare the data with the literature data, and then suggest the most accurate and reliable method for the determination of methanol crossover rates. The permeability values using these techniques were found to be in the range 1.11 × 10−6 to 1.27 × 10−6 cm2/s. The permeability values obtained using these techniques are close to one another and also compare well with the literature data for similar conditions; however, after careful screening of the data, it was found that the potentiometric technique is the easiest in terms of experimentation, reproducibility of results and accuracy, and gives more data points. This technique is suggested to be the best and most accurate for studying methanol permeation rates through membranes for direct methanol fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narayanan, S.R.; Kindler, A.; Jeffries-Nakamura, B.; Chun, W.; Frank, H.; Smith, M.; Valdez, T.I.; Surampudi, S.; Halpert, G.: Proceedings of 11th Annual Battery Conference on Applications and Advances, Long Beach, California, Jan 9–12 (1996)

  2. Hamnett, H.: In: Wolf, V.; Arnold, L.; Hubert, A.G. (eds.) Handbook of Fuel Cells: Fundamental Technology and Applications, vol. 1. Wiley, New York (2003)

  3. Smith M.A., Ocampo A.L., Espinosa-Medina M.A., Sebastian P.J.: Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J. Power Sources 124, 59 (2003)

    Article  Google Scholar 

  4. Zaidi S.M.J., Mikhailenko S.D., Robertson G.P., Guiver M.D., Kaliaguine S.: Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Mem. Sci. 173, 17 (2000)

    Article  Google Scholar 

  5. Beck N.K., Steiger B., Scherer G.G., Wokaun A.: Methanol tolerant oxygen reduction catalysts derived from electrochemically pre-treated Bi2Pt2-yIryO7 pyrochlores. Fuel Cells 1, 26 (2006)

    Article  Google Scholar 

  6. Verbrugge M.W.: Methanol diffusion in perfluorinated ion-exchange membranes. J. Electrochem. Soc. 136, 417 (1989)

    Article  Google Scholar 

  7. Wang J.T., Wasmus S., Savinell R.F.: Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J. Electrochem. Soc. 143, 1233 (1996)

    Article  Google Scholar 

  8. Ren X.M., Zelenay P., Thomas S., Darey J., Gottesfeld S.: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111 (2000)

    Article  Google Scholar 

  9. Ren X.M., Springer T.E., Zawodzinski T.A., Gottesfeld S.: Methanol transport through nafion membranes electro-osmotic drag effects on potential step measurements. J. Electrochem. Soc. 147(2), 466 (2000)

    Article  Google Scholar 

  10. Jiang R., Chu D.: CO2 crossover through a nafion membrane in a direct methanol fuel cell. Electrochem. Solid-State Lett. 5(7), A156 (2002)

    Article  Google Scholar 

  11. Jiang R., Chu D.: Comparative studies of methanol crossover and cell performance for a DMFC. J. Electrochem. Soc. 151(1), A64 (2004)

    Article  Google Scholar 

  12. Drake J.A., Wilson W., Killen K.: Evaluation of the experimental model for methanol crossover in DMFCs. J. Electrochem. Soc. 151(3), A413 (2004)

    Article  Google Scholar 

  13. Tricoli V., Carretta N., Bartolozzi M.: A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes. J. Electrochem. Soc. 147(4), 1286 (2000)

    Article  Google Scholar 

  14. Umeda M., Hatakeyama Y., Mohamedi M., Uchida I.: Assessment of methanol crossover through a nafion membrane using a platinum microdisc electrode. Electrochem. Commun. 72(2), 80 (2004)

    Google Scholar 

  15. Ramya K., Dhathathreyan K.S.: Methanol crossover studies on heat-treated Nafion® membranes. J. Mem. Sci. 311, 121 (2008)

    Article  Google Scholar 

  16. Jung I., Kim D., Yun Y., Chung S., Lee J., Tak Y.: Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol. Electro. Acta 50, 607 (2004)

    Article  Google Scholar 

  17. Ling, J., Savadogo, O.: Comparison of methanol crossover among four types of Nafion membranes. J. Electrochem. Soc. 151(10), A1604 (2004)

    Article  Google Scholar 

  18. Munichandraiah N., McGrath K., Prakash G.K.S., Aniszfeld R., Olah G.A.: A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. J. Power Sources 117, 98 (2003)

    Article  Google Scholar 

  19. Crank J., Park G.S.: Diffusion in Polymers, pp. 176. Academic Press, London (1968)

    Google Scholar 

  20. Carretta N., Tricoli V., Picchioni F.: Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation. J. Mem. Sci. 166, 189 (2000)

    Article  Google Scholar 

  21. Woo Y., Oh S.Y., Kang Y.S., Jung B.: Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J. Mem. Sci. 220, 31 (2003)

    Article  Google Scholar 

  22. Bae B., Kim D.: Sulfonated polystyrene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells. J. Mem. Sci. 220, 75 (2003)

    Article  Google Scholar 

  23. Li L., Zhang J., Wang Y.: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Mem. Sci. 226, 159 (2003)

    Article  Google Scholar 

  24. Every H.A., Hickner M.A., McGrath J.E., Zawodzinsk T.A. Jr.: An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. J. Mem. Sci. 250, 183 (2005)

    Article  Google Scholar 

  25. Beden, B.; Lamy, C.; Leger, J.M.: In: Bockris, J.O.M.; Conway, B.E.; White, R.E. (eds.), Modern Aspects of Electrochemistry, vol. 34, p. 57. Plenum Press, New York (1992)

  26. Dohle H., Divisek J., Mergel J., Detjen H.F., Zingler C., Stolten D.: Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell. J. Power Sources 105, 274 (2002)

    Article  Google Scholar 

  27. Ren S., Li C., Zhao X., Wu Z., Wang S., Sun G., Xin Q., Yang X.: Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells. J. Mem. Sci. 247, 59 (2005)

    Article  Google Scholar 

  28. Dimitrova, P.; Friedrich, K.A.; Stimming, U.; Vogt, B.: Modified Nafion((R))-based membranes for use in direct methanol fuelcells. Solid State Ionics 150, 115 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Javaid Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javaid Zaidi, S.M. Comparative Study of Electrochemical Methods for Determination of Methanol Permeation Through Proton-Exchange Membranes. Arab J Sci Eng 36, 689–701 (2011). https://doi.org/10.1007/s13369-011-0085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0085-1

Keywords

Navigation