Skip to main content
Log in

Quantitative study of equilibrium and non-equilibrium polymer dynamics through systematic hierarchical coarse-graining simulations

  • Themed Reviews
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Study of complex macromolecular systems through molecular simulations is a very intense research area. Here we present an overview concerning the development and application of hierarchical particle coarsegraining molecular dynamics simulations on the quantitative prediction of the dynamics and the rheology of polymers. Through a systematic time mapping approach that involves data from detailed atomistic dynamic simulations the coarse-grained polymer model can be used to quantitatively predict the dynamics and the rheology of the polymeric chains in a very broad range of characteristic length and time scales. Data from the application of these approaches on the dynamics of polystyrene melts under equilibrium and under shear flow conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrienko, D.S. Le’on, L. Delle Site and K. Kremer, 2005, Adhesion of polycarbonate blends on a nickel surface, Macromolecules 38, 5810–5816.

    Article  Google Scholar 

  • Antonietti, M., K.J. Fölsch and H. Sillescu, 1987, Critical chain lengths in polystyrene bulk diffusion, Makromol. Chem. 188, 2317–2324.

    Article  Google Scholar 

  • Baig, C., B.J. Edwards, D.J. Keffer and H.D. Cochran, 2005, Rheological and structural studies of liquid decane, hexadecane, and tetracosane under planar elongational flow using nonequilibrium molecular-dynamics simulations, J. Chem. Phys. 122, 184906.

    Article  Google Scholar 

  • Baig, C., B.J. Edwards, D.J. Keffer, H.D. Cochran and V. Harmandaris, 2006, Rheological and structural studies of linear polyethylene melts under planar elongational flow using nonequilibrium molecular dynamics simulations, J. Chem. Phys. 124, 084902.

    Article  Google Scholar 

  • Baig, C. and B.J. Edwards, 2011, Analysis of the configurational temperature of polymeric liquids under shear and elongational flows using nonequilibrium molecular dynamics and Monte Carlo simulations, J. Chem. Phys. 132, 184906.

    Article  Google Scholar 

  • Baig, C. and V. Harmandaris, 2010, Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow, Macromolecules 43, 3156–3160.

    Article  Google Scholar 

  • Baig, C. and V. Mavrantzas, 2009, Multiscale simulation of polymer melt viscoelasticity: Expanded-ensemble Monte Carlo coupled with atomistic non-equilibrium molecular dynamics, Phys. Rev. B. 79, 144302.

    Article  Google Scholar 

  • Binder, K. Ed. 1995, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, New York.

    Google Scholar 

  • Delle Site, L., C.F. Abrams, A. Alavi and K. Kremer, 2002, Polymers near metal surfaces: Selective adsorption and global conformations, Phys. Rev. Lett. 89, 156103.

    Article  Google Scholar 

  • Depa P.K. and J.K. Maranas, 2007, Dynamic evolution in coarsegrained molecular dynamics simulations of polyethylene melts, J. Chem. Phys. 126, 054903.

    Article  Google Scholar 

  • Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Claredon Press: Oxford, England.

    Google Scholar 

  • Dunweg B. and A.J.C. Ladd, 2008, Lattice Boltzmann simulations of soft matter systems, Adv. Polym. Sci., 89–166.

    Google Scholar 

  • Eslami, H., H.A. Karimi-Varzaneh and F. Müller-Plathe, 2011, Coarse-grained computer simulation of nanoconfined polyamide-6,6, Macromolecules 44, 3117–3128.

    Article  Google Scholar 

  • Español P. and P.B. Warren, 1995, Statistical-mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196.

    Article  Google Scholar 

  • Evans, D.J. and G.P. Morriss, 2008, Statistical Mechanics of Nonequilibrium Liquids, 2nd Ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Evans, D.J. and G.P. Morriss, 1984, Nonlinear-response theory for steady planar Couette flow, Phys. Rev. A 30, 1528–1530.

    Article  Google Scholar 

  • Evereaers, R., S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian and K. Kremer, 2004, Rheology and microscopic topology of entangled polymeric liquids, Science 303, 823–826.

    Article  Google Scholar 

  • Fraaije, J.G.E.M., B. van Vlimmeren, N. Maurits, M. Postma, O. Evers, C. Hoffmann, P. Altevogt and G. GoldbeckWood, 1996, The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts, J. Chem. Phys. 106, 4260–4269.

    Article  Google Scholar 

  • Fritz, D., V. Harmandaris, K. Kremer and N.F.A. van der Vegt, 2009, Coarse-grained polymer melts based on isolated ato mistic chains: Simulation of polystyrene of different tacticities, Macromolecules 42, 7579–7588.

    Article  Google Scholar 

  • Fritz, D., K. Koschke, V. Harmandaris, N.F.A. van der Vegt and K. Kremer, 2011, Multiscale modeling of soft matter: scaling of dynamics, Phys. Chem. Chem. Phys. 13, 10412–10420.

    Article  Google Scholar 

  • Ganesan, V. and V. Pryamitsyn, 2003, Dynamical mean-field theory for inhomogeneous polymeric systems, J. Chem. Phys. 118, 4345.

    Article  Google Scholar 

  • Gompper, T. Ihle, K. Kroll and R.G. Winkler, 2009, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, Adv. Polym. Sci. 221, 1–87.

    Google Scholar 

  • Guenza M. G., 2008, Theoretical models for bridging timescales in polymer dynamics, J. Phys.: Condens. Matter 20, 033101–0331024.

    Google Scholar 

  • Harmandaris, V., V. Mavrantzas and D.N. Theodorou, 1998, Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts, Macromolecules 31, 7934–7943.

    Article  Google Scholar 

  • Harmandaris, V., V. Mavrantzas, D.N. Theodorou, M. Kröger, J. Ramirez, H.C. Öttinger and D. Vlassopoulos, 2003, Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments, Macromolecules 36, 1376–1387.

    Article  Google Scholar 

  • Harmandaris, V., N.P. Adhikari, N.F.A. van der Vegt and K. Kremer, 2006, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39, 6708–6719.

    Article  Google Scholar 

  • Harmandaris, V.A., D. Reith, N.F.A. van der Vegt and K. Kremer, 2007, Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene, Macromol. Chem. Phys. 208, 2109–2120.

    Article  Google Scholar 

  • Harmandaris, V.A. and K. Kremer, 2009a, Dynamics of polystyrene melts through hierarchical multiscale simulations, Macromolecules 42, 791–802.

    Article  Google Scholar 

  • Harmandaris, V.A. and K. Kremer, 2009b, Predicting polymer dynamics at multiple length and time scales, Soft Matter 5, 3920–3926.

    Article  Google Scholar 

  • Harmandaris, V., G. Floudas and K. Kremer, 2011, Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments, Macromolecules 44, 393–402.

    Article  Google Scholar 

  • Harmandaris, V., G. Floudas and K. Kremer, 2013, Dynamic heterogeneity in fully miscible blends of polystyrene with oligostyrene, Phys. Rev. Lett. 110, 165701.

    Article  Google Scholar 

  • Hijon C, P. Espanol, E. Vanden-Eijnden and R. Delgado-Buscalioni, 2010, Mori-Zwanzig formalism as a practical computational tool, Faraday Discuss., 144, 301–322.

    Article  Google Scholar 

  • Hunt, T.A. and B.D. Todd, 2009, Diffusion of linear polymer melts in shear and extensional flows, J. Chem. Phys. 131, 054904.

    Article  Google Scholar 

  • Ilg, P., H.C. Öttinger and Martin Kröger, 2009, Systematic timescale-bridging molecular dynamics applied to flowing polymer melts, Phys. Rev. E 79, 011802.

    Article  Google Scholar 

  • Ilg, P., 2010, Thermodynamically consistent coarse graining the non-equilibrium dynamics of unentangled polymer melts, J. Non-Newtonian Fluid Mech. 165, 973–979.

    Article  Google Scholar 

  • Izvekov, S. and G.A. Voth 2006, Modeling real dynamics in the coarse-grained representation of condensed phase systems, J. Chem. Phys. 125, 151101.

    Article  Google Scholar 

  • Jeon, J. and M.-S. Chun, 2007, Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels, J. Chem. Phys. 126, 154904/1–10.

    Article  Google Scholar 

  • Johnston K. and V. Harmandaris, 2013a, Hierarchical multiscale modeling of polymersolid interfaces: Atomistic to coarsegrained description and structural and conformational properties of polystyrenegold systems, Macromolecules 46, 57415750.

    Article  Google Scholar 

  • Johnston K. and V. Harmandaris, 2013b, Hierarchical simulations of hybrid polymer-solid materials, Soft Matter 9, 6696–6710.

    Article  Google Scholar 

  • Johnston, K., R.M. Nieminen and K. Kremer, 2011, A hierarchical dualscale study of bisphenol-A-polycarbonate on a silicon surface: structure, dynamics and impurity diffusion, Soft Matter, 7, 6457–6466.

    Article  Google Scholar 

  • Katsoulakis, M. and P. Plechac, 2013, Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems, J. Chem. Phys. 139, 074115.

    Article  Google Scholar 

  • Kindt P. and W.J. Briels, 2007, A single particle model to simulate the dynamics of entangled polymer melts, J. Chem. Phys. 127, 134901

    Article  Google Scholar 

  • Kim, J.M., D.J. Keffer, M. Kröger and B.J. Edwards, 2008, Rheological and entanglement characteristics of linear chain polyethylene liquids in planar Couette and planar elongational flows, J. Non-Newtonian Fluid Mech. 152, 168–183.

    Article  Google Scholar 

  • Kremer, K. and G. Grest, 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys. 92, 5057–5086.

    Article  Google Scholar 

  • Kröger, M. and S. Hess, 2000, Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics, Phys. Rev. Lett. 85, 1128–1131.

    Article  Google Scholar 

  • Kröger, M., 2004, Simple models for complex nonequilibrium fluids, Phys. Rep. 390, 453–551.

    Article  Google Scholar 

  • Kröger, M., 2005, Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems, Comput. Phys. Commun. 168, 209–232.

    Article  Google Scholar 

  • Kröger, M., W. Loose and S. Hess, 1993, Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics, J. Rheol. 37, 1057.

    Article  Google Scholar 

  • Lahmar, F., C. Tzoumanekas, D.N. Theodorou and B. Rousseau, 2009, Onset of Entanglements Revisited. Dynamical Analysis, Macromolecules 42, 7485–7494.

    Article  Google Scholar 

  • Larson, R., 1999, The Rheology of Complex Fluids, Oxford University Press, NewYork.

    Google Scholar 

  • Lee, J.Y., M.-S. Chun, H.W. Jung and J.C. Hyun, 2012, Conformational dynamics of sub-micron sized wormlike polyelectrolyte polymer in flow fields, Macromol. Res. 20, 1163–1172.

    Article  Google Scholar 

  • Lees, A.W. and S.F. Edwards, 1972, The computer study of transport processes under extreme conditions, J. Phys. C 5, 1921.

    Article  Google Scholar 

  • Li, Y., B.C. Abberton, M. Kröger and W.K. Liu, 2013, Challenges in multiscale modeling of polymers, Polymers 5, 751–832.

    Article  Google Scholar 

  • Li, Y, S. Tang, B.C. Abberton, M. Kröger, C. Burkhart, B. Jiang, G.J. Papakonstantopoulos, M. Poldneff and W.K. Liu, 2012, A predictive multiscale computational framework for viscoelastic properties of linear polymers, Polymer 53, 5935–5952.

    Article  Google Scholar 

  • Lyubimov I.Y, J. McCarty, A. Clark and M.G. Guenza, 2010, Analytical rescaling of polymer dynamics from mesoscale simulations, J. Chem. Phys. 132, 224903.

    Article  Google Scholar 

  • Likhtman, A.E. 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion, Macromolecules 38, 6128–6139.

    Article  Google Scholar 

  • Malevanets A. and R. Kapral, 1999, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110, 8605–8613.

    Article  Google Scholar 

  • Masubuchi Y., G. Ianniruberto, F. Greco and G. Marrucci, 2003, Entanglement molecular weight and frequency response of sliplink networks, J. Chem. Phys. 119, 6925–6930.

    Article  Google Scholar 

  • Mavrantzas V.G. and D.N. Theodorou, 1998, Atomistic simulation of polymer melt elasticity: Calculation of the free energy of an oriented polymer melt, Macromolecules 31, 6310–6332.

    Article  Google Scholar 

  • Mavrantzas V.G. and H.C. Öttinger, 2002, Atomistic Monte Carlo simulations of polymer melt elasticity: Their nonequilibrium thermodynamics GENERIC formulation in a generalized canonical ensemble, Macromolecules 35, 960–975.

    Article  Google Scholar 

  • Moore, J.D., S.T. Cui, H.D. Cochran and P.T. Cummings, 2000, A molecular dynamics study of a short-chain polyethylene melt: I. Steady-state shear, J. Non-Newtonian Fluid Mech. 93, 83–99.

    Article  Google Scholar 

  • Mulder, T., V. Harmandaris, A.V. Lyulin, N.F.A. van der Vegt, K. Kremer and M.A.J. Michels, 2009, Structural properties of atactic polystyrene of different thermal history obtained from a multi-scale simulation, Macromolecules 42, 384–391.

    Article  Google Scholar 

  • Öttinger, H.C. 2007, Systematic coarse graining: “Four Lessons and A Caveat” from nonequilibrium statistical mechanics, MRS Bull. 32, 936–940.

    Article  Google Scholar 

  • Padding, J.T. and W.J. Briels, 2002, Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations, J. Chem. Phys. 117, 925.

    Article  Google Scholar 

  • Padding, J.T. and W.J. Briels, 2003, Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow, J. Chem. Phys. 118, 10276.

    Article  Google Scholar 

  • Padding, J.T. and W.J. Briels, 2011, Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology, J. Phys.: Condens. Matter 23, 233101.

    Google Scholar 

  • Pandey, Y.N., A. Brayton, C. Burkhart, G.J. Papakonstantopoulos and M. Doxastakis, 2014, Multiscale modeling of polyisoprene on graphite, J. Chem. Phys, 140, 054908.

    Article  Google Scholar 

  • Rahimi, M., I. Iriarte-Carretero, A. Ghanbari, M.C. Bohm and F. Muller-Plathe, 2012, Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation, Nanotechnology 23, 305702.

    Article  Google Scholar 

  • Reith, D., H. Meyer and F. Müller-Plathe, 2001, Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties, Macromolecules 34, 2335–2345.

    Article  Google Scholar 

  • Rissanou A. and V. Harmandaris, 2013, Dynamics of various polymer/graphene interfacial systems through atomistic molecular dynamics simulations, Soft Matter, to be published.

    Google Scholar 

  • Shell, M.S. 2012, Systematic coarse-graining of potential energy landscapes and dynamics in liquids, J. Chem. Phys. 137, 084503.

    Article  Google Scholar 

  • Todd, B.D. and P.J. Daivis, 1998, Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions, Phys. Rev. Lett, 81, 1118–1121.

    Article  Google Scholar 

  • Todd, B.D. 2001, Computer simulation of simple and complex atomistic fluids by nonequilibrium molecular dynamics techniques, Comp. Phys. Comm. 142, 14–21.

    Article  Google Scholar 

  • Tschöp, W., K. Kremer, J. Batoulis, T. Buerger and O. Hahn, 1998, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polym. 49, 61–74.

    Article  Google Scholar 

  • Tzoumanekas, C. and D.N. Theodorou, 2006, Topological analysis of linear polymer melts: a statistical approach, Macromolecules 39, 4592–4604.

    Article  Google Scholar 

  • Van den Noort, A. and W.J. Briels, 2008, Brownian dynamics simulations of concentration coupled shear banding, J. Non-Newtonian Fluid Mech. 152, 148–155.

    Article  Google Scholar 

  • Vogiatzis, G.G., E. Voyiatzis and D.N. Theodorou, 2011, Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system, Europ. Polym. J. 47, 699–712.

    Article  Google Scholar 

  • Zeng, Q.H., A.B. Yu and G.Q. Lu, 2008, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym. Sci. 33, 191–269.

    Article  Google Scholar 

  • Zwanzig R., 1961, Memory effects in irreversible thermodynamics, Phys. Rev. 124, 983–992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagelis A. Harmandaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmandaris, V.A. Quantitative study of equilibrium and non-equilibrium polymer dynamics through systematic hierarchical coarse-graining simulations. Korea-Aust. Rheol. J. 26, 15–28 (2014). https://doi.org/10.1007/s13367-014-0003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-014-0003-7

Keywords

Navigation