Skip to main content

Advertisement

Log in

HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acsády L, Arabadzisz D, Freund TF (1996a) Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience 73:299–315

    Article  PubMed  Google Scholar 

  • Acsády L, Görcs TJ, Freund TF (1996b) Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73:317–334

    Article  PubMed  Google Scholar 

  • Aksenov MY, Hasselrot U, Bansal AK, Wu G, Nath A, Anderson C, Mactutus CF, Booze RM (2001) Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci Lett 305:5–8

    Article  CAS  PubMed  Google Scholar 

  • Ali AB, Deuchars J, Pawelzik H, Tomson AM (1998) CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 507:201–217. doi:10.1111/j.1469-7793.1998.201bu.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An SF, Groves M, Gray F, Scaravilli F (1999) Early entry of widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonucci F, Alpár A, Kacza J, Caleo M, Verderio C, Giani A, Martens H, Chaudhry FA, Allegra M, Grosche J, Michalski D, Erck C, Hoffman A, Harkany T, Matteoli M, Härtig W (2012) Cracking down on inhibition: elective removal of GABAergic interneurons from hippocampal networks. J Neurosci 32:1989–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong C, Krook-Magnuson E, Soltesz I (2012) Neurogliaform and ivy cells: a major family of nNOS expressing GABAergic neurons. Front Neural Circuits 6:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avignone E, Frenquelli BG, Irving AJ (2005) Differential responses to NMDA receptor activation in rat hippocampal interneurons and pyramidal cells may underlie enhanced pyramidal cell vulnerability. Eur J Neurosci 22:3077–3090

    Article  CAS  PubMed  Google Scholar 

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104

    Article  CAS  PubMed  Google Scholar 

  • Behnisch T, Francesconi W, Sanna PP (2004) HIV secreted protein Tat prevents long-term potentiation in the hippocampal CA1 region. Brain Res 1012:187–189

    Article  CAS  PubMed  Google Scholar 

  • Bouilleret V, Schwaller B, Schurmans S, Celio MR, Fritschy JM (2000) Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 97:47–58

    Article  CAS  PubMed  Google Scholar 

  • Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Keller AJ, Turchan-Cholewo J, Smart EJ, Geurin T, Chauhan A, Reid R, Xu R, Nath A, Knapp PE, Hauser KF (2008) Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 56:1414–1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828. doi:10.1038/368823a0

    Article  CAS  PubMed  Google Scholar 

  • Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Koerner H, Baune BT (2013) TNF-α and its receptors modulate complex behaviours and neurotrophins in transgenic mice. Psychoneuroendocrinology 38:3102–3114

    Article  CAS  PubMed  Google Scholar 

  • Carey AN, Sypek EI, Singh HD, Kaufman MJ, McLaughlin JP (2012) Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav Brain Res 229:48–56

    Article  CAS  PubMed  Google Scholar 

  • Chamberland S, Topolnik L (2012) Inhibitory control of hippocampal inhibitory neurons. Front Neurosci 6:165. doi:10.3389/fnins.2012.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberland S, Salesse C, Topolnik D, Topolnik L (2010) Synapse-specific inhibitory control of hippocampal feedback inhibitory circuit. Front Cell Neurosci 4:130. doi:10.3389/fncel.2010.00130

    Article  PubMed  PubMed Central  Google Scholar 

  • Chana G, Everall IP, Crews L, Langford D, Adame A, Grant I, Cherner M, Lazzaretto D, Heaton R, Ellis R, Masliah E, HNRC Group (2006) Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Neurology 67:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L, Erkkila B, Barron SC, Lopez CM, Liang BJ, Jeffries BW, Pelkey KA, McBain CJ (2013) Dual origins of functionally distinct OLM interneurons revealed by differential 5HT3AR expression. Nat Neurosci 16:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:7467–7473

    Article  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258. doi:10.1002/ana.21697

    Article  PubMed  Google Scholar 

  • Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M (2007) PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 27:9901–9915

    Article  CAS  PubMed  Google Scholar 

  • Debaiseux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13:355–363

    Article  CAS  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  CAS  PubMed  Google Scholar 

  • Di JH, Li C, Yu HM, Zheng JN, Zhang GY (2012) nNOS downregulation attenuates neuronal apoptosis by inhibiting nNOS-GluR6 interaction and GluR6 nitrosylation in cerebral ischemic reperfusion. Biochem Biophys Res Commun 420:594–599

    Article  CAS  PubMed  Google Scholar 

  • Drury PP, Davidson JO, Mathai S, van den Heuij JG, Bennett L, Tan S, Silverman RB, Gunn AJ (2014) nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology 83:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugladze T, Vida I, Tort AB, Gross A, Otahal J, Heinemann U, Kopell NJ, Gloveli T (2007) Impaired hippocampal rythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc Natl Acad Sci U S A 104:17530–17535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev 8:33–44

    Article  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MVL, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95-NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104:3438–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everall IP, Salaria S, Atkinson JH, Young C, Corbeil J, Grant I, Masliah E (2006) Diminished somatostatin gene expression in individuals with HIV and major depressive disorder. Neurology 67:1867–1869

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Fu T (2014) Somatostatin modulates LTP in hippocampal CA1 pyramidal neurons: differential activation conditions in apical and basal dendrites. Neurosci Lett 561:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Vasuta OC, Zhang LY, Wang L, George A, Raymond LA (2010) N-Methyl-D-aspartate receptor subunit- and neuronal-type dependence of excitotoxic signaling through post-synaptic density 95. J Neurochem 115:104–156

    Article  CAS  Google Scholar 

  • Fitting S, Booze RM, Hasselrot U, Mactutus CF (2006) Intrahippocampal injections of Tat: effects on prepulse inhibition of the auditory startle response in adult male rats. Pharmacol Biochem Behav 84:189–196

    Article  CAS  PubMed  Google Scholar 

  • Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF (2013) Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 73:443–453

    Article  CAS  PubMed  Google Scholar 

  • Fox L, Alford M, Achim C, Mallory M, Masliah E (1997) Neurodegeneration of somatostatin immunoreactive neurons in HIV-encephalitis. J Neuropathol Exp Neurol 207:42–51

    Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thonsom A, Somogyi P, Klausberger T (2008) Ivy cells: a population of nitric-oxide-producing, slow spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman BJ, Chen T, Lisiniccia JG, Soukup VM, Carmicam JR, Starkey JM, Masliah E, Commins DL, Brandt D, Grant I, Singer EJ, Levin AJ, Miller J, Winkler JM, Fox HS, Luxon BA, Morgello S (2012) The national neuroAIDS tissue consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 7:e46178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldin M, Epsztein J, Jorquera I, Represa A, Ben-Ari Y, Crépel V, Cossart R (2007) Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency. J Neurosci 27:9560–9572

    Article  CAS  PubMed  Google Scholar 

  • Grima G, Benz B, Ho KQ (2001) Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicity. Eur J Neurosci 14:1762–1770

    Article  CAS  PubMed  Google Scholar 

  • Gulyás AI, Hájos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411

    PubMed  Google Scholar 

  • Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sørensen FB, Vesterby A, West MJ (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. AMPIS 96:379–394

    CAS  Google Scholar 

  • Guo M, Bryant M, Sultana S, Jones O, Royall W 3rd (2012) Effects of vitamin A deficiency and opioids on parvalbumin+ interneurons of the HIV-1 transgenic rat. Curr HIV Res 10:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harricharan R, Thaver V, Russell VA, Daniels WM (2015) Tat-induced histopathological alterations mediate hippocampus-associated behavioural impairments in rats. Behav Brain Funct 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazra A, Gu F, Aulakh A, Berridge C, Eriksen JL, Ziburkus J (2013) Inhibitory neuron and hippocampal circuit dysfunction in an aged mouse model of Alzheimer’s disease. PLoS One 8:e64318. doi:10.1371/journal.pone.0064318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385:645–649

    Article  CAS  PubMed  Google Scholar 

  • Hossain MI, Kamaruddin MA, Cheng HC (2012) Aberrant regulation and function of SRc family tyrosine kinases: their potential contributions to glutamate-induced neurotoxicity. Clin Exp Parmacol Physiol 39:684–691

    Article  CAS  Google Scholar 

  • Hsu YC, Chang YC, Lin YC, Sze CI, Huang CC, Ho CJ (2014) Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in the neonatal brain. J Cereb Blood Flow Metab 34:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Sun YJ, Zhou QG, Chen L, Hu Y, Luo CX, Wu JY, Xu JS, Li LX, Zhu DY (2008) Negative regulation of neurogenesis and spatial memory by NR2B-containing NMDA receptors. J Neurochem 106:1900–1913

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Kosaka T (2000) Colocalization of parvalbumin and somatostatin-like immunoreactivity in the mouse hippocampus: quantitative analysis with optical dissector. J Comp Neurol 428:377–388

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Kosaka T (2002) Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. J Comp Neurol 449:1–25

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Kosaka T (2004) Patterns of colocalization of neuronal nitric oxide synthase and somatostatin like immunoreactivity in the mouse hippocampus: quantitative analysis with optical dissector. Neuroscience 124:797–808

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Aika Y, Fukuda T, Kosaka T (1999) Quantitative analysis of neuronal nitric oxide synthase immunoreactive neurons in the mouse hippocampus with optical dissector. J Comp Neurol 410:398–412

    Article  CAS  PubMed  Google Scholar 

  • Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Nath A (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. PNAS USA 110:155888–13593. doi:10.1073/pnas.1308673110

    Google Scholar 

  • Kelley JB, Balda MA, Anderson KL, Itzhak Y (2009) Impairments in fear conditioning in mice lacking the nNOS gene. Learn Mem 16:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JE, Eugenin EA, Hazleton JE, Morgello S, Berman JW (2010) Mechanisms of HIV-tat-induced phosphorylation of N-methyl-D-aspartate receptor subunit 2A in human primary neurons. Am J Pathol 176:2819–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner L, Weitzdoerfer R, Hoeger H, Url A, Schmidt P, Engelmann M, Villar SR, Fountoulakis M, Lubec G, Lubec B (2004) Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide 11:316–330

    Article  CAS  PubMed  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41–47

    Article  CAS  PubMed  Google Scholar 

  • Korotkova T, Fushc EC, Ponomarenko A, von Engelhardt J, Moyner H (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68:557–569

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Katsumaru H, Hama K, Wu Y, Heizmann CW (1987) GABAergic neurons containing the Ca2+ binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419:119–130

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288

    Article  CAS  PubMed  Google Scholar 

  • Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirol 6:423–432

    Article  Google Scholar 

  • Lapray D, Lasztoczi B, Lagler M, Vinet TJ, Katona L, Valenti O, Hartwich K, Borhegyi Z, Somogyi P, Klausberger T (2012) Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci 15:1265–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leão RN, Mikulovic S, Leão KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort ABL, Kullander K (2012) O-LM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci 11:1524–1530

    Article  CAS  Google Scholar 

  • Leite JP, Shimelli L, Terra-Bustamante VC, Costa ET, Assirati JA, de Nucci G, Martins AR (2002) Loss and sprouting of nitric oxide synthase neurons in the human epileptic hippocampus. Epilepsia 43:235–242

    Article  CAS  PubMed  Google Scholar 

  • Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Frank TF, Cain P, Sigurdsson EM, Hoeffer CA (2013) Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun 1:34. doi:10.1186/2051-5960-1-34

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy JA, Shimabukuro J, Hollander H, Mills J, Kaminsky L (1985) Isolation of AIDS-associated retroviruses from cerebrospinal fluid and brain of patients with neurological symptoms. Lancet 2:586–588

    CAS  PubMed  Google Scholar 

  • Li ST, Matsushita M, Moriwakai A, Saheki Y, Lu YF, Tomizawa K, Wu HY, Terada H, Matsui H (2004) HIV-1 Tat inhibits long-term potentiation and attenuates spatial learning [corrected]. Ann Neurol 55:362–371

    Article  CAS  PubMed  Google Scholar 

  • Li W, Henderson LJ, Major EO, Al-Harthi L (2011) IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway DKK1 in a STAT 3-dependent manner. J Immunol 186:6771–6778. doi:10.4049/jimmunol.1100099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long LL, Song YM, Xu L, Yi F, Long HY, Zhou L, Qin XH, Feng L, Xiao B (2014) Aberrant neuronal synaptic connectivity in CA1 area of the hippocampus from pilocarpine-induced epileptic rats observed by fluorogold. Int J Clin Exp Med 7:2687–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovett-Barron M, Losonczy A (2014) Behavioral consequences of GABAergic neuronal diversity. Curr Opin Neurobiol 26:27–33

    Article  CAS  PubMed  Google Scholar 

  • Lovett-Barron M, Kaifosh P, Kheirbek MA, Damielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343:857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Ge N, Achim CL, Hansen LA, Wiley CA (1992) Selective neuronal vulnerability in HIV encephalitis. J Neuropathol Exp Neurol 51:585–593

    Article  CAS  PubMed  Google Scholar 

  • McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmunol 157:3–10

    Article  CAS  PubMed  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714

    CAS  PubMed  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23

    Article  CAS  PubMed  Google Scholar 

  • Milstein AD, Bloss EB, Apostolides PF, Vaidya SP, Dilly GA, Zemelman BV, Magee JC (2015) Inhibitory gating of input comparison in the CA1 microcircuit. Neuron 87:1274–1289

    Article  CAS  PubMed  Google Scholar 

  • Moga D, Hof PR, Vissavajjhala P, Moran TH, Morison JH (2002) Parvalbumin-containing interneurons in rat hippocampus have an AMPA receptor profile suggestive of vulnerability to excitotoxicity. J Chem Neuroanat 23:249–253

    Article  CAS  PubMed  Google Scholar 

  • Morris BJ (1989) Neuronal localization of neuropeptide Y gene expression in rat brain. J Comp Neurol 290:358–368

    Article  CAS  PubMed  Google Scholar 

  • Mouton PR (2002) Principals and practices of unbiased stereology: an introduction for bioscientists. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Müller C, Remy S (2014) Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus. Front Synaptic Neurosci 6:23. doi:10.3389/fnsyn.2014.00023

    PubMed  PubMed Central  Google Scholar 

  • Nath A (2015) Eradication of human immunodeficiency virus from brain reservoirs. J Neurovirol 21:227–234. doi:10.1007/s13365-014-0291-1

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Steiner J (2014) Synaptodendritic injury with the HIV-Tat protein: what is the therapeutic target? Exp Neurol 251:112–114

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Psooy K, Martic C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Conant K, Chen P, Scott C, Major EO (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274:17098–17102

    Article  CAS  PubMed  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3366

    CAS  PubMed  Google Scholar 

  • Orbán-Kris K, Szabadi T, Szilágyi T (2015) The loss of Ivy cells and the hippocampal input modulatory O-LM cells contribute to the emergence of hyperexcitability in the hippocampus. Rom J Morphol Embryol 56:155–161

    Google Scholar 

  • Peng Z, Zhang N, Wei W, Huang CS, Cetina Y, Otis TS, Houser CR (2013) A reorganized GABAergic circuit in a model of epilepsy: evidence from optogenetic labeling and stimulation of somatostatin interneurons. J Neurosci 33:14392–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippon V, Velluntini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Roubin R, Filippi P (1994) The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology 205:519–529

    Article  CAS  PubMed  Google Scholar 

  • Porter JT, Cauli B, Staiger JF, Lambolez B, Rossier J, Audinat E (1998) Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur J Neurosci 10:3617–3628

    Article  CAS  PubMed  Google Scholar 

  • Rameau GA, Tukey DA, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27:3445–3455

    Article  CAS  PubMed  Google Scholar 

  • Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugniere M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B (2010) Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29:1348–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142

    Article  PubMed  CAS  Google Scholar 

  • Sik A, Penttonen M, Ylinen A, Buzsáki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651–6665

    CAS  PubMed  Google Scholar 

  • Smialowska M, Domin H, Zieba B, Koźniewska E, Michalik R, Piotrowski P, Katja M (2009) Neuroprotective effects of neuropeptide Y-Y2 and Y5 receptor agonists in vitro and in vivo. Neuropeptides 43:235–249

    Article  CAS  PubMed  Google Scholar 

  • Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB (1983) Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol 14:403–418

    Article  CAS  PubMed  Google Scholar 

  • Somogyi J, Szabo A, Somogyi P, Lamsa K (2012) Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores. Front Neural Circuits 6:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X, Williams KC (2009) Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol 174:1808–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16:435–452

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X (2014) Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell Rep 7:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CA, Dobkin J, Weinberger OK (1994) TAT-mediated transcellular activation of HIV-1 long terminal repeat directed gene expression by HIV-1-infected peripheral blood mononuclear cells. J Immunol 153:3831–3839

    CAS  PubMed  Google Scholar 

  • Tóth K, Maglóczky Z (2014) The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front Neuroanat. doi:10.3389/fnana.2014.00100

    PubMed  PubMed Central  Google Scholar 

  • Tóth K, Eross L, Vajda K, Halász P, Freund TF, Maglóczky Z (2010) Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 133:2763–2777

    Article  PubMed  PubMed Central  Google Scholar 

  • Tozzi V, Balestra P, Serraino D, Bellagamba R, Corpolongo A, Piselli P, Lorenzini P, Visco-Comandini U, Vlassi C, Quartuccio ME, Giulianelli M, Noto P, Galgani S, Ippolito G, Antinori A, Narciso P (2005) Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retroviruses 21:706–713

    Article  PubMed  Google Scholar 

  • Tricoire L, Vitalis T (2012) Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 6:82. doi:10.3389/fncir.2012.00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Tricoire L, Pelkey KA, Daw MI, Sousa VH, Miyoshi G, Jeffries B, Cauli B, Fishell G, McBain CJ (2010) Common origins of hippocampal ivy and nitric oxide synthase expressing neurogliaform cells. J Neurosci 30:2165–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyan L, Chamberland S, Magnin E, Camiré O, Francavilla R, David LS, Deisseroth K, Topolnik L (2014) Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry. J Neurosci 34:4534–4547

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Hu SQ, Li C, Zhiu C, Qi SH, Zhang GY (2010) Transduced PDZ1 domain of PSD-95 decreases Src phosphorylation and increases nNOS (Ser847) phosphorylation contributing to neuroprotection after cerebral ischemia. Brain Res 1328:162–170

    Article  CAS  PubMed  Google Scholar 

  • Weitzdoerfer R, Hoeger H, Engidawork E, Engelmann M, Singewald N, Lubec G, Lubec B (2004) Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide 10:130–140

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7:975–984

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Yue Y, Tian H, Lao L, Wang Y, Xiang J, Wang S, Ding H (2014) Tamiprosate protects neurons against ischemic stroke by disrupting the interaction between PSD95 and nNOS. Neuropharmacology 83:107–117

    Article  CAS  PubMed  Google Scholar 

  • Xapelli S, Fabienne A, Ferreira R, Silva AP, Malva JO (2006) Neuropeptide Y as an endogenous antiepileptic, neuroprotective and pro-neurogenic peptide. Recent Pat CNS Drug Discov 1:315–324

    Article  CAS  PubMed  Google Scholar 

  • Yamada J, Jinno S (2015) Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon’s horn of the mouse hippocampus. J Comp Neurol 523:790–804

    Article  CAS  PubMed  Google Scholar 

  • Yu XM, Askalan R, Keil GJ 2nd, Salter MW (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:647–648

    Article  Google Scholar 

  • Zanelli S, Naylor M, Kapur J (2009) Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Res 1297:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Saksena NK (2013) HIV associated neurocognitive disorders. Infect Dis Rep 5:38–50

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants K99 DA033878 (SF), K99 DA039791 (JJP), F32 DA039039 (CJS), T32 DA007027 (WDM and CJS), R01 DA018633 (KFH), R01 DA024461 (PEK), R01 DA034231 (PEK and KFH), R01 DA033200 (KFH), R01 MH094626 (ARM), R21 MH103695 (ARM), and K02 DA027374 (KFH) from the National Institute on Drug Abuse. The authors thank Dr. Marie Bonhomme for the assistance with the immunohistochemical analysis, Mr. Phu Vo for the help in maintaining the mice, Ms. Yun Ji for laboratory support, and Dr. Thomas Reeves for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt F. Hauser.

Ethics declarations

Animal procedures were approved by the Virginia Commonwealth University Institutional Animal Care and Use Committee and are in accordance with Association for Assessment and Accreditation of Laboratory Animal Care guidelines.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marks, W.D., Paris, J.J., Schier, C.J. et al. HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J. Neurovirol. 22, 747–762 (2016). https://doi.org/10.1007/s13365-016-0447-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-016-0447-2

Keywords

Navigation