Skip to main content

Advertisement

Log in

Expression of CHRFAM7A and CHRNA7 in neuronal cells and postmortem brain of HIV-infected patients: considerations for HIV-associated neurocognitive disorder

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Despite the recent advances in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1) remains a global health threat. HIV-1 affects the central nervous system by releasing viral proteins that trigger neuronal death and neuroinflammation, and promotes alterations known as HIV-associated neurocognitive disorders (HAND). This disorder is not fully understood, and no specific treatments are available. Recently, we demonstrated that the HIV-1 envelope protein gp120IIIB induces a functional upregulation of the α7-nicotinic acetylcholine receptor (α7) in neuronal cells. Furthermore, this upregulation promotes cell death that can be abrogated with receptor antagonists, suggesting that α7 may play an important role in the development of HAND. The partial duplication of the gene coding for the α7, known as CHRFAM7A, negatively regulates α7 expression but its role in HIV infection has not been studied. Hence, we studied both CHRNA7 and CHRFAM7A regulation patterns in various gp120IIIB in vitro conditions. In addition, we measured CHRNA7 and CHRFAM7A expression levels in postmortem brain samples from patients suffering from different stages of HAND. Our results demonstrate the induction of CHRNA7 expression accompanied by a significant downregulation of CHRFAM7A in neuronal cells when exposed to pathophysiological concentrations of gp120IIIB. Our results suggest a dysregulation of CHRFAM7A and CHRNA7 expressions in the basal ganglia from postmortem brain samples of HIV+ subjects and expand the current knowledge about the consequences of HIV infection in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adle-Biassette H, Levy Y, Colombel M et al (1995) Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21:218–227

    Article  CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799. doi:10.1212/01.WNL.0000287431.88658.8b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araud T, Graw S, Berger R et al (2011) The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function. Biochem Pharmacol 82:904–914. doi:10.1016/j.bcp.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam L, Winzer-Serhan U, Leslie FM (2003) Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons. Neuroscience 119:965–977

    Article  CAS  PubMed  Google Scholar 

  • Ballester LY, Capó-Vélez CM, García-Beltrán WF et al (2012) Up-regulation of the neuronal nicotinic receptor α7 by HIV glycoprotein 120: potential implications for HIV-associated neurocognitive disorder. J Biol Chem 287:3079–3086. doi:10.1074/jbc.M111.262543

    Article  CAS  PubMed  Google Scholar 

  • Bardi G, Sengupta R, Khan MZ et al (2006) Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. J Neurovirol 12:211–218. doi:10.1080/13550280600848373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfante R, Antonini RA, De Pizzol M et al (2011) Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. J Neuroimmunol 230:74–84. doi:10.1016/j.jneuroim.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  • Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol Oxf Engl 14:214–221

    Article  CAS  Google Scholar 

  • Berger JR, Nath A (1997) HIV dementia and the basal ganglia. Intervirology 40:122–131

    Article  CAS  PubMed  Google Scholar 

  • Berger JR, Nath A, Greenberg RN et al (2000) Cerebrovascular changes in the basal ganglia with HIV dementia. Neurology 54:921–926

    Article  CAS  PubMed  Google Scholar 

  • Berrada F, Ma D, Michaud J et al (1995) Neuronal expression of human immunodeficiency virus type 1 env proteins in transgenic mice: distribution in the central nervous system and pathological alterations. J Virol 69:6770–6778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskaran K, Mussini C, Antinori A et al (2008) Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 63:213–221. doi:10.1002/ana.21225

    Article  PubMed  Google Scholar 

  • Bonsi P, Cuomo D, Martella G et al (2011) Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 5:6. doi:10.3389/fnana.2011.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38:563–570. doi:10.1002/ana.410380404

    Article  CAS  PubMed  Google Scholar 

  • Buzy JM, Brenneman DE, Siegal FP et al (1989) Cerebrospinal fluid from cognitively impaired patient with acquired immunodeficiency syndrome shows gp120-like neuronal killing in vitro. Am J Med 87:361–362

    Article  CAS  PubMed  Google Scholar 

  • Cashion MF, Banks WA, Bost KL, Kastin AJ (1999) Transmission routes of HIV-1 gp120 from brain to lymphoid tissues. Brain Res 822:26–33

    Article  CAS  PubMed  Google Scholar 

  • Catani MV, Corasaniti MT, Navarra M et al (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74:2373–2379

    Article  CAS  PubMed  Google Scholar 

  • Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986. doi:10.1016/S1473-3099(13)70269-X

    Article  PubMed  PubMed Central  Google Scholar 

  • Corboy JR, Buzy JM, Zink MC, Clements JE (1992) Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 258:1804–1808

    Article  CAS  PubMed  Google Scholar 

  • Costantini TW, Dang X, Coimbra R et al (2014) CHRFAM7A, a human-specific and partially duplicated α7-nicotinic acetylcholine receptor gene with the potential to specify a human-specific inflammatory response to injury. J Leukoc Biol. doi:10.1189/jlb.4RU0814-381R

    PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17:176–183. doi:10.1007/s13365-011-0021-x

    Article  PubMed  Google Scholar 

  • Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10:350–357. doi:10.1080/13550280490521078

    Article  PubMed  Google Scholar 

  • Dani JA, Lester RA (2001) Nicotinic acetylcholine receptors in neurons. In: eLS. John Wiley & Sons, Ltd

  • Davis CB, Dikic I, Unutmaz D et al (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186:1793–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca V, Likhodi O, Van Tol HHM et al (2006) Regulation of alpha7-nicotinic receptor subunit and alpha7-like gene expression in the prefrontal cortex of patients with bipolar disorder and schizophrenia. Acta Psychiatr Scand 114:211–215. doi:10.1111/j.1600-0447.2006.00785.x

    Article  PubMed  Google Scholar 

  • de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F et al (2011) Function of partially duplicated human α7 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem 286:594–606. doi:10.1074/jbc.M110.180067

    Article  PubMed  Google Scholar 

  • Desai M, Hu N, Byrd D, Yu Q (2013) Neuronal apoptosis in HIV-1-associated central nervous diseases and neuropathic pain. In: Rudner J (ed) Apoptosis. InTech

  • Di Stefano M, Gray F, Leitner T, Chiodi F (1996) Analysis of ENV V3 sequences from HIV-1-infected brain indicates restrained virus expression throughout the disease. J Med Virol 49:41–48. doi:10.1002/(SICI)1096-9071(199605)49:1<41::AID-JMV7>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  • Everall I, Barnes H, Spargo E, Lantos P (1995) Assessment of neuronal density in the putamen in human immunodeficiency virus (HIV) infection. Application of stereology and spatial analysis of quadrats. J Neurovirol 1:126–129

    Article  CAS  PubMed  Google Scholar 

  • Gault J, Robinson M, Berger R et al (1998) Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185. doi:10.1006/geno.1998.5363

    Article  CAS  PubMed  Google Scholar 

  • Gelbard HA, James HJ, Sharer LR et al (1995) Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol Appl Neurobiol 21:208–217

    Article  CAS  PubMed  Google Scholar 

  • Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3:28. doi:10.1186/1742-4690-3-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert M, Kirihara J, Mills J (1991) Enzyme-linked immunoassay for human immunodeficiency virus type 1 envelope glycoprotein 120. J Clin Microbiol 29:142–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Scarano F, Martín-García J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81. doi:10.1038/nri1527

    Article  PubMed  Google Scholar 

  • Grant I, Franklin DR, Deutsch R et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055–2062. doi:10.1212/WNL.0000000000000492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16. doi:10.1007/s13365-010-0006-1

    Article  CAS  PubMed  Google Scholar 

  • Hesselgesser J, Halks-Miller M, DelVecchio V et al (1997) CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol 7:112–121

    Article  CAS  PubMed  Google Scholar 

  • Hesselgesser J, Taub D, Baskar P et al (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8:595–598

    Article  CAS  PubMed  Google Scholar 

  • Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci Off J Soc Neurosci 24:9531–9540. doi:10.1523/JNEUROSCI.3085-04.2004

    Article  CAS  Google Scholar 

  • Joint United Nations Programme on HIV/AIDS (UNAIDS) (2013) Global Report: UNAIDS report on global AIDS epidemic 2013.

  • Jones MV, Bell JE, Nath A (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS Lond Engl 14:2709–2713

    Article  CAS  Google Scholar 

  • Kaul M, Zheng J, Okamoto S et al (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892. doi:10.1038/sj.cdd.4401623

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Ma Q, Medders KE et al (2007) HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ 14:296–305. doi:10.1038/sj.cdd.4402006

    Article  CAS  PubMed  Google Scholar 

  • Koneru R, Olive MF, Tyor WR (2014) Combined antiretroviral therapy reduces brain viral load and pathological features of HIV encephalitis in a mouse model. J Neurovirol 20:9–17. doi:10.1007/s13365-013-0223-5

    Article  CAS  PubMed  Google Scholar 

  • Kong LY, Wilson BC, McMillian MK et al (1996) The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 172:77–83. doi:10.1006/cimm.1996.0217

    Article  CAS  PubMed  Google Scholar 

  • Kure K, Weidenheim KM, Lyman WD, Dickson DW (1990) Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration. Acta Neuropathol (Berl) 80:393–400

    Article  CAS  Google Scholar 

  • Lee C, Liu Q-H, Tomkowicz B et al (2003) Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 74:676–682. doi:10.1189/jlb.0503206

    Article  CAS  PubMed  Google Scholar 

  • Lucey DR, VanCott TC, Loomis LD et al (1993) Measurement of cerebrospinal fluid antibody to the HIV-1 principal neutralizing determinant (V3 loop). J Acquir Immune Defic Syndr 6:994–1001

    CAS  PubMed  Google Scholar 

  • Meucci O, Miller RJ (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci Off J Soc Neurosci 16:4080–4088

    CAS  Google Scholar 

  • Mothobi NZ, Brew BJ (2012) Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis 25:4–9. doi:10.1097/QCO.0b013e32834ef586

    Article  CAS  PubMed  Google Scholar 

  • Oh SK, Cruikshank WW, Raina J et al (1992) Identification of HIV-1 envelope glycoprotein in the serum of AIDS and ARC patients. J Acquir Immune Defic Syndr 5:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ohagen A, Devitt A, Kunstman KJ et al (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol 77:12336–12345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto S, Kang Y-J, Brechtel CW et al (2007) HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell 1:230–236. doi:10.1016/j.stem.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  • Pillai SK, Pond SLK, Liu Y et al (2006) Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain J Neurol 129:1872–1883. doi:10.1093/brain/awl136

    Article  Google Scholar 

  • Rolfs A, Schumacher HC (1990) Early findings in the cerebrospinal fluid of patients with HIV-1 infection of the central nervous system. N Engl J Med 323:418–419. doi:10.1056/NEJM199008093230614

    Article  CAS  PubMed  Google Scholar 

  • Ruţă SM, Mătuşa R, Cernescu CC (1998) Cerebrospinal fluid Western blot profiles in the evolution of HIV-1 pediatric encephalopathy. Rom J Virol 49:61–71

    PubMed  Google Scholar 

  • Rychert J, Strick D, Bazner S et al (2010) Detection of HIV gp120 in plasma during early HIV infection is associated with increased proinflammatory and immunoregulatory cytokines. AIDS Res Hum Retroviruses 26:1139–1145. doi:10.1089/aid.2009.0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, McDermott MP, Marder K et al (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142. doi:10.1080/13550280290049615

    Article  PubMed  Google Scholar 

  • Santosuosso M, Righi E, Lindstrom V et al (2009) HIV-1 envelope protein gp120 is present at high concentrations in secondary lymphoid organs of individuals with chronic HIV-1 infection. J Infect Dis 200:1050–1053. doi:10.1086/605695

    Article  CAS  PubMed  Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM et al (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193. doi:10.1038/367188a0

    Article  CAS  PubMed  Google Scholar 

  • Trujillo JR, Navia BA, Worth J et al (1996) High levels of anti-HIV-1 envelope antibodies in cerebrospinal fluid as compared to serum from patients with AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol Off Publ Int Retrovirol Assoc 12:19–25

    Article  CAS  Google Scholar 

  • van der Zanden EP, Hilbers FW, Verseijden C et al (2012) Nicotinic acetylcholine receptor expression and susceptibility to cholinergic immunomodulation in human monocytes of smoking individuals. Neuroimmunomodulation 19:255–265. doi:10.1159/000335185

    Article  PubMed  Google Scholar 

  • von Giesen HJ, Wittsack HJ, Wenserski F et al (2001) Basal ganglia metabolite abnormalities in minor motor disorders associated with human immunodeficiency virus type 1. Arch Neurol 58:1281–1286

    Article  Google Scholar 

  • Wang Y, Xiao C, Indersmitten T et al (2014) The duplicated α7 subunits assemble and form functional nicotinic receptors with the full-length α7. J Biol Chem 289:26451–26463. doi:10.1074/jbc.M114.582858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168. doi:10.1007/s11065-009-9102-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Kulkosky J, Acheampong E et al (2004) HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc Natl Acad Sci U S A 101:7070–7075. doi:10.1073/pnas.0304859101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Thylin MR, Ghorpade A et al (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful for Dr. Valerie Wojna’s valuable suggestions and in depth review of this manuscript. We thank the National NeuroAIDS Tissue Consortium (NNTC) and the Data Coordinating Center (DCC) which is a project funded by the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke under the following grants: U24MH100928 (California NeuroAIDS Tissue Network), U24MH100930 (Texas NeuroAIDS Research Center), and U24MH100929 (UCLA National Neurological AIDS Bank). This research was supported by the National Institutes of Health-NINDS and National Institute of General Medical Sciences (NIGMS) grants (1P20GM103642 and 2U54NS43011 to José A. Lasalde-Dominicci), the RISE Program from NIGMS (2R25GM061151 to Manuel Delgado-Vélez and Orestes Quesada), and MARC Program from NIGMS (5T34GM007821 to Orestes Quesada and Felix M. Ramos). Research reported in this publication was supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number U54MD007587 and the National Institute of Mental Health (NIMH) grant Number P30MH075673-07 to Carlos A. Báez-Pagán. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Orestes Quesada or José A. Lasalde-Dominicci.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, F.M., Delgado-Vélez, M., Ortiz, Á.L. et al. Expression of CHRFAM7A and CHRNA7 in neuronal cells and postmortem brain of HIV-infected patients: considerations for HIV-associated neurocognitive disorder. J. Neurovirol. 22, 327–335 (2016). https://doi.org/10.1007/s13365-015-0401-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0401-8

Keywords

Navigation