Skip to main content

Advertisement

Log in

Microglia-derived HIV Nef+ exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The negative factor (Nef) of human immunodeficiency virus (HIV) is an accessory protein that is thought to be integral to HIV-associated immune- and neuroimmune pathogenesis. Here, we show that nef-transfected microglia-released Nef+ exosome (exNef) disrupts the apical blood–brain barrier (BBB) and that only nef-transfected microglia release Nef in exosomes. nef–gfp-transduced neurons and astrocytes release exosomes but did not release exNef in the extracellular space. Apical administration of exNef derived from nef-transfected 293T cells reduced transendothelial electrical resistance (TEER) and increased permeability of the BBB. Microglia-derived exNef applied to either the apical/basal BBB significantly reduced expression of the tight junction protein, ZO-1, suggesting a mechanism of exNef-mediated neuropathogenesis. Microglia exposed to exNef release elevated levels of Toll-like receptor-induced cytokines and chemokines IL-12, IL-8, IL-6, RANTES, and IL-17A. Magnetic nanoparticle delivery of Nef peptides containing the Nef myrisolation site across an in vitro BBB ultimately reduced nef-transfected microglia release of Nef exosomes and prevented the loss of BBB integrity and permeability as measured by TEER and dextran-FITC transport studies, respectively. Overall, we show that exNef is released from nef–gfp-transfected microglia; exNef disrupts integrity and permeability, and tight junctions of the BBB, and induces microglial cytokine/chemokine secretion. These exNef-mediated effects were significantly restricted by Nef peptides. Taken together, this study provides preliminary evidence of the role of exNef in HIV neuroimmune pathogenesis and the feasibility of a nanomedicine-based therapeutics targeting exNef to treat HIV-associated neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC (2010) The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010:402593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch MR, Learmont JC, Dyer WB, Deacon NJ, Zaunders JJ, Saksena N, Cunningham AL, Mills J, Sullivan JS (2001) An examination of signs of disease progression in survivors of the Sydney Blood Bank Cohort (SBBC). J Clin Virol 22:263–270

    Article  CAS  PubMed  Google Scholar 

  • Campbell TD, Khan M, Huang MB, Bond VC, Powell MD (2008) HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn Dis 18:S2-14-19

  • Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham A, Dwyer D, Dowton D, Mills J (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VS, Raymond A, Samikkannu T, Nair MP (2014) Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 25:055101

    Article  PubMed  PubMed Central  Google Scholar 

  • El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397

    Article  PubMed  Google Scholar 

  • Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3:729–739

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Otake K, Tashiro M, Adachi A (1996a) Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett 393:93–96

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Otake K, Tashiro M, Adachi A (1996b) Human immunodeficiency virus type 1 Nef protein on the cell surface is cytocidal for human CD4+ T cells. FEBS Lett 393:105–108

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Otake K, Tashiro M, Adachi A (1996c) In vitro cytocidal effects of human immunodeficiency virus type 1 Nef on unprimed human CD4+ T cells without MHC restriction. J Gen Virol 77(Pt 12):2943–2951

    Article  CAS  PubMed  Google Scholar 

  • Greenway AL, Holloway G, McPhee DA (2000) HIV-1 Nef: a critical factor in viral-induced pathogenesis. Adv Pharmacol 48:299–343

    Article  CAS  PubMed  Google Scholar 

  • Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, Azad A, Sankovich S, Lambert P (2002) Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol 76:2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller C, Rauch S, Fackler OT (2007) HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2:e1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Eum SY, Andras IE, Hennig B, Toborek M (2009) PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 23:1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Shah A, Gangwani MR, Silverstein PS, Fu M, Kumar A (2014) HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 4:4450

    PubMed  PubMed Central  Google Scholar 

  • Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4:e5219

    Article  PubMed  PubMed Central  Google Scholar 

  • Luabeya MK, Dallasta LM, Achim CL, Pauza CD, Hamilton RL (2000) Blood-brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 26:454–462

    Article  CAS  PubMed  Google Scholar 

  • Mangino G, Percario ZA, Fiorucci G, Vaccari G, Acconcia F, Chiarabelli C, Leone S, Noto A, Horenkamp FA, Manrique S, Romeo G, Polticelli F, Geyer M, Affabris E (2007) HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2. PLoS One 6:e22982

    Article  Google Scholar 

  • Mangino G, Serra V, Borghi P, Percario ZA, Horenkamp FA, Geyer M, Affabris E (2012) Exogenous nef induces proinflammatory signaling events in murine macrophages. Viral Immunol 25:117–130

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2012) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920

    Article  Google Scholar 

  • Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S, D’Aloja P, Federico M, Vullo V, Fomina A, Mesri EA, Superti F, Baur AS (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6:218–230

    Article  CAS  PubMed  Google Scholar 

  • Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, Jager J, Harris M, Romeo G, Affabris E, Federico M (2003) HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol 170:1716–1727

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, van de Garde MD, Middeldorp JM (2011) Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochim Biophys Acta 1809:715–721

    Article  CAS  PubMed  Google Scholar 

  • Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. J Colloid Interface Sci 271:277–283

    Article  CAS  PubMed  Google Scholar 

  • Percario Z, Olivetta E, Fiorucci G, Mangino G, Peretti S, Romeo G, Affabris E, Federico M (2003) Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol 74:821–832

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Gendelman HE (1997) Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol 62:100–106

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M (1997) A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol 158:3499–3510

    CAS  PubMed  Google Scholar 

  • Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, Powell MD (2011) HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retrovir 27:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiyed ZM, Gandhi NH, Nair MP (2009) AZT 5'-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol 15:343–347

    Article  CAS  PubMed  Google Scholar 

  • Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4:e1000131

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, Hochberg FH, Breakefield XO, Weissleder R, Lee H (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Wu N, Yang JM, Gould SJ (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286:14383–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Q, Kim MO, Zhao ML, Landau NR, Goldstein H, Lee S (2002) Vpr- and Nef-dependent induction of RANTES/CCL5 in microglial cells. Virology 301:342–353

    Article  CAS  PubMed  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sol-Foulon N, Esnault C, Percherancier Y, Porrot F, Metais-Cunha P, Bachelerie F, Schwartz O (2004) The effects of HIV-1 Nef on CD4 surface expression and viral infectivity in lymphoid cells are independent of rafts. J Biol Chem 279:31398–31408

    Article  CAS  PubMed  Google Scholar 

  • Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, Schwartz O, Benaroch P (2001) HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci U S A 98:12144–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C (2004) Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329:302–318

    Article  PubMed  Google Scholar 

  • Zheng YH, Plemenitas A, Linnemann T, Fackler OT, Peterlin BM (2001) Nef increases infectivity of HIV via lipid rafts. Curr Biol 11:875–879

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Zhang B, Eum SY, Toborek M (2012) HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 32:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3:447–450

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant awards 3R01DA027049-04S1 and 3R01DA02704 from the National Institute of Health.

Authors would like to thank Advanced Materials Engineering Research Institute (AMERI) at the College of Engineering and Computing of Florida International University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Raymond.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1 (S1)

Exosome preparation from nef-gfp-transfected CHME-5 cells were analyzed via TEM. a TEM image of crude microglia-derived exosomes preparation. b Profile of exosome size within preparation. (GIF 168 kb)

High resolution (TIFF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raymond, A.D., Diaz, P., Chevelon, S. et al. Microglia-derived HIV Nef+ exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J. Neurovirol. 22, 129–139 (2016). https://doi.org/10.1007/s13365-015-0397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0397-0

Keywords

Navigation