Skip to main content

Advertisement

Log in

Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

An Erratum to this article was published on 27 September 2013

Abstract

Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood–brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs’ relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Annunziata P (2003) Blood–brain barrier changes during invasion of the central nervous system by HIV-1. Old and new insights into the mechanism. J Neurol 250:901–906

    Article  PubMed  CAS  Google Scholar 

  • Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180

    Article  PubMed  CAS  Google Scholar 

  • Bokhari SM, Hegde R, Callen S, Yao H, Adany I, Li Q, Li Z, Pinson D, Yeh HW, Cheney PD, Buch S (2011) Morphine potentiates neuropathogenesis of SIV infection in rhesus macaques. J Neuroimmune Pharmacol 6:626–639

    Article  PubMed Central  PubMed  Google Scholar 

  • Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood–brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123

    Article  PubMed  CAS  Google Scholar 

  • Changyong C, Sun M, Li H, Brockmeyer N, Wu NP (2010) Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN(+) dendritic cells. Eur J Med Res 15:377–382

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cloak CC, Chang L, O'Neil SP, Ernst TM, Anderson DC, Donahoe RM (2011) Neurometabolite abnormalities in simian immunodeficiency virus-infected macaques with chronic morphine administration. J Neuroimmune Pharmacol 6:371–380

    Article  PubMed Central  PubMed  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95:3117–3121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Witte L, de Vries RD, van der Vlist M, Yuksel S, Litjens M, de Swart RL, Geijtenbeek TB (2008) DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 4:e1000049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dhillon NK, Williams R, Callen S, Zien C, Narayan O, Buch S (2008) Roles of MCP-1 in development of HIV-dementia. Front Biosci 13:3913–3918

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Donahoe RM, O'Neil SP, Marsteller FA, Novembre FJ, Anderson DC, Lankford-Turner P, McClure HH (2009) Probable deceleration of progression of Simian AIDS affected by opiate dependency: studies with a rhesus macaque/SIVsmm9 model. J Acquir Immune Defic Syndr 50:241–249

    Article  PubMed  Google Scholar 

  • Eden A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslen M (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585

    Article  PubMed  CAS  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    Article  PubMed  CAS  Google Scholar 

  • Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 3:e3321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Higgins JR, Sutjipto S, Marx PA, Pedersen NC (1992) Shared antigenic epitopes of the major core proteins of human and simian immunodeficiency virus isolates. J Med Primatol 21:265–269

    PubMed  CAS  Google Scholar 

  • Hu SSW, Lokensgard JR, Peterson PK (2005) Morphine potentiates HIV-1 gp120-induced neuronal apoptosis. J Infect Dis 191:886–889

    Article  PubMed  CAS  Google Scholar 

  • Ifergan I, Kebir H, Bernard M, Wosik K, Dodelet-Devillers A, Cayrol R, Arbour N, Prat A (2008) The blood–brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131:785–799

    Article  PubMed  Google Scholar 

  • Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991

    Article  PubMed  CAS  Google Scholar 

  • Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B (2010) Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood–brain barrier during experimental autoimmune encephalomyelitis. J Immunol 184:7196–7206

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Kim P, Tourtellotte W, Federspiel CF (2004) Transforming growth factor beta and monocyte chemotactic protein-1 are elevated in cerebrospinal fluid of immunocompromised patients with HIV-1 infection. J NeuroAIDS 2:33–43

    PubMed  CAS  Google Scholar 

  • Kumar R, Orsoni S, Norman L, Verma AS, Tirado G, Giavedoni LD, Staprans S, Miller GM, Buch SJ, Kumar A (2006) Chronic morphine exposure causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/SHIV-infected Indian rhesus macaques. Virology 354:192–206

    Article  PubMed  CAS  Google Scholar 

  • Lee EO, Kim SE, Park HK, Kang JL, Chong YH (2011) Extracellular HIV-1 Tat upregulates TNF-alpha dependent MCP-1/CCL2 production via activation of ERK1/2 pathway in rat hippocampal slice cultures: inhibition by resveratrol, a polyphenolic phytostilbene. Exp Neurol 229:399–408

    Article  PubMed  CAS  Google Scholar 

  • Li ZCN, Shan L, Gong S, Yin Q, Jiang X (2009) Inducible expression of functional mu opioid receptors in murine dendritic cells. J Neuroimmune Pharmacol 4:359

    Article  PubMed  Google Scholar 

  • Messmer DHI, Hitosugi N, Schmidt-Wolf IGH, Singhal PC (2006) Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med 12:284–290

    PubMed Central  PubMed  CAS  Google Scholar 

  • Noel RJ Jr, Kumar A (2006) Virus replication and disease progression inversely correlate with SIV tat evolution in morphine-dependent and SIV/SHIV-infected Indian rhesus macaques. Virology 346:127–138

    Article  PubMed  CAS  Google Scholar 

  • O'Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, Rolnitzky L, Markowitz M, Margolis DM, Levy D, Bhardwaj N (2011) Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest 121:1088–1101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orenstein JM, Fox C, Wahl SM (1997) Macrophages as a source of HIV during opportunistic infections. Science 276:1857–1861

    Article  PubMed  CAS  Google Scholar 

  • Perez-Casanova A, Husain K, Noel RJ Jr, Rivera-Amill V, Kumar A (2008) Interaction of SIV/SHIV infection and morphine on plasma oxidant/antioxidant balance in macaque. Mol Cell Biochem 308:169–175

    Article  PubMed  CAS  Google Scholar 

  • Perez-Casanova A, Noel RJ Jr, Rivera-Amill V, Husain K, Kumar A (2007) Morphine-mediated deterioration of oxidative stress leads to rapid disease progression in SIV/SHIV-infected macaques. AIDS Res Hum Retroviruses 23:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Pichyangkul S, Saengkrai P, Yongvanitchit K, Limsomwong C, Gettayacamin M, Walsh DS, Stewart VA, Ballou WR, Heppner DG (2001) Isolation and characterization of rhesus blood dendritic cells using flow cytometry. J Immunol Methods 252:15–23

    Article  PubMed  CAS  Google Scholar 

  • Potula R, Dhillion N, Sui Y, Zien CA, Funa K, Pinson D, Mayo MS, Singh DK, Narayan O, Buch S (2004) Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis. Am J Pathol 165:815–824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raghavan R, Cheney PD, Raymond LA, Joag SV, Stephens EB, Adany I, Pinson DM, Li Z, Marcario JK, Jia F, Wang C, Foresman L, Berman NE, Narayan O (1999) Morphological correlates of neurological dysfunction in macaques infected with neurovirulent simian immunodeficiency virus. Neuropathol Appl Neurobiol 25:285–294

    Article  PubMed  CAS  Google Scholar 

  • Sabado RL, O'Brien M, Subedi A, Qin L, Hu N, Taylor E, Dibben O, Stacey A, Fellay J, Shianna KV, Siegal F, Shodell M, Shah K, Larsson M, Lifson J, Nadas A, Marmor M, Hutt R, Margolis D, Garmon D, Markowitz M, Valentine F, Borrow P, Bhardwaj N (2010) Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 116:3839–3852

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P (2012) Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation 9:245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, Levine AJ, Minagar A, Novembre FJ, Somboonwit C, Nath A, Sinnott JT (2011) Editorial neuroAIDS review. AIDS 25:123–141

    Article  PubMed  Google Scholar 

  • Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71:445–457

    PubMed  CAS  Google Scholar 

  • Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, Fuchs D, Tambussi G, Cinque P, Hecht FM, Price RW (2011) Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 204:753–760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki S, Chuang AJ, Chuang LF, Doi RH, Chuang RY (2002) Morphine promotes simian acquired immunodeficiency syndrome virus replication in monkey peripheral mononuclear cells: induction of CC chemokine receptor 5 expression for virus entry. J Infect Dis 185:1826–1829

    Article  PubMed  CAS  Google Scholar 

  • Tirado G, Kumar A (2006) Evolution of SIV envelope in morphine-dependent rhesus macaques with rapid disease progression. AIDS Res Hum Retroviruses 22:114–119

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Lu Y, Yao H, Buch S (2011) Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability. PLoS One 6:e21707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xia H, Liu H, Zhang G, Zheng Y (2009) Phenotype and function of monocyte-derived dendritic cells from Chinese rhesus macaques. Cell Mol Immunol 6:159–165

    Article  PubMed  Google Scholar 

  • Yu Kimata MT, Cella M, Biggins JE, Rorex C, White R, Hicks S, Wilson JM, Patel PG, Allan JS, Colonna M, Kimata JT (2002) Capture and transfer of simian immunodeficiency virus by macaque dendritic cells is enhanced by DC-SIGN. J Virol 76:11827–11836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154:3821–3835

    PubMed  CAS  Google Scholar 

  • Zink MC, Brice AK, Kelly KM, Queen SE, Gama L, Li M, Adams RJ, Bartizal C, Varrone J, Rabi SA, Graham DR, Tarwater PM, Mankowski JL, Clements JE (2010) Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 202:161–170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE (2001) Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 184:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Zozulya AL, Ortler S, Lee J, Weidenfeller C, Sandor M, Wiendl H, Fabry Z (2009) Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J Neurosci 29:140–152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Public Health Service, National Institutes of Health through the following NIAID grants: AI077414 (PI: Pooja Jain) and AI093172-01 (PI: Zafar K. Khan). We also wish to thank the Philadelphia NeuroAIDS Training Grant: T32 MH079785, and the technical assistance provided by Ms. Anne Lamontagne.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilpa Buch or Pooja Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollenbach, R., Sagar, D., Khan, Z.K. et al. Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques. J. Neurovirol. 20, 175–183 (2014). https://doi.org/10.1007/s13365-013-0182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-013-0182-x

Keywords

Navigation