Skip to main content
Log in

Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original contributions presented in the study are publicly available. This data can be found here: The chloroplast genomes assembled in this study were deposited in GenBank with the accession numbers ON320386.

References

  • Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34(17):3030–3031. https://doi.org/10.1093/bioinformatics/bty220

    Article  CAS  PubMed  Google Scholar 

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, DePamphilis CW et al (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 6(1):1–20

    Article  Google Scholar 

  • Chen Q, Wu X, Zhang D (2020a) Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirrhosae bulbus and its adulterants. PLoS ONE 15(2):e0229181. https://doi.org/10.1371/journal.pone.0229181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Hui Y, Han J, Liu C, Song J, Shi L et al (2010) Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5(1):e8613

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y-R, Xu W-F, Sun Q-W. (2019). Research progress of Laportea bulbifera. Chinese Journal of Experimental Traditional Medical Formulae, 214–220.

  • Chen Y, Zou S, Xu W, Sun Q, Yun L. (2020b). Spectrum–effect relationship of antioxidant and anti‐inflammatory activities of Laportea bulbifera based on multivariate statistical analysis. Biomedical Chromatography, 34(2).

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL et al (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23(11):2175–2190. https://doi.org/10.1093/molbev/msl089

    Article  CAS  PubMed  Google Scholar 

  • Dan W, Juan T, Ying L, Jing L, Si-ying C, Zi-peng G et al (2019) Simultaneous determination of 11 constituents in Laportea bulbifera of Miao medicine by UPLC-ESI-MS. Chin J Pharm Anal 39(08):1425–1432 (in Chinese)

    Google Scholar 

  • Deng T, Kim C, Zhang DG, Zhang JW, Li ZM, Nie ZL, et al. (2013). Zhengyia shennongensis: a new bulbiliferous genus and species of the nettle family (Urticaceae) from central China exhibiting parallel evolution of the bulbil trait. Taxon

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Research 32(suppl_2):W273–W279. https://doi.org/10.1093/nar/gkh458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61(4):665–677. https://doi.org/10.1007/s00294-015-0495-9

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-Y, Yang J-X, Bai M-Z, Zhang G-Q, Liu Z-J (2021a) The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biol 21(1):1–14

    Article  Google Scholar 

  • Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ (2021b). The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biology.

  • H-Y, H. (2018). Preliminary study on the basis and metabolism of anti - inflammatory substance of Laportea bulbifera. Beijing University Of Chinese Medicine

  • Hadiah JT, Conn BJ (2009) Usefulness of morphological characters for infrageneric classification of Elatostema (Urticaceae). Blumea J Plant Taxon Plant Geog 54(1):181–191

    Article  Google Scholar 

  • Han H, Suo Y, Liu X, Wu Y, Dai Y, Ni Y et al (2018) Screening of active components of urtica dentata hand by RAW264. 7 anti-inflammatory cell model and chemical constituents. Global Tradit Chin Med 11:651–655

    CAS  Google Scholar 

  • Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL et al (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45(2):547–563

    Article  CAS  PubMed  Google Scholar 

  • Hou W-R, Su Z-Q, Pi H-F, Yao G-M, Zhang P, Luo X et al (2010) Immunosuppressive constituents from Urtica dentata Hand. J Asian Nat Prod Res 12(8):707–713

    Article  CAS  PubMed  Google Scholar 

  • HU H-J (2020). Study on quality control of Miao medicine Laportea bulbifera based on fingerprint analysis and quantitative analysis of multi-components. Chinese Traditional and Herbal Drugs, 4325–4330

  • Hu Y, Woeste KE, Zhao P (2017) Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny. Front Plant Sci 7:1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadiah JT, Conn BJ, Quinn CJ (2008) Infra-familial phylogeny of Urticaceae, using chloroplast sequence data. Australian Syst Botany 21(5):375–385

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim GB, Lim CE, Kim JS, Kim K, Mun JH. (2020a). Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: Insights into evolutionary divergence and phylogenomic implications. BMC Genomics, 21(1)

  • Kim YK, Jo S, Cheon SH, Joo MJ, Kim KJ (2020b). Plastome Evolution and Phylogeny of Orchidaceae, With 24 New Sequences. Frontiers in Plant Science, 11

  • Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB et al (2020) metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 17(11):1103–1110. https://doi.org/10.1038/s41592-020-00971-x

    Article  CAS  PubMed  Google Scholar 

  • Kravtsova T, Moore A, Wilmot-Dear C, Zhinkina N (2020) Comparative carpological study of Poikilospermum (Urticaceae) in relation to taxonomy. Kew Bull 75(1):1–34

    Article  Google Scholar 

  • Krawczyk K, Nobis M, Myszczyński K, Klichowska E, Sawicki J (2018) Plastid super-barcodes as a tool for species discrimination in feather grasses (Poaceae: Stipa). Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Kumar S, Hahn FM, McMahan CM, Cornish K, Whalen MC (2009) Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines. BMC Plant Biol 9(1):1–12

    Article  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyalo CM, Gichira AW, Li ZZ, Saina JK, Itambo M, Hu GW, et al. (2018). Characterization and comparative analysis of the complete chloroplast genome of the critically endangered species Streptocarpus teitensis (Gesneriaceae). BioMed Research International,2018,(2018–3–25), 2018, 1–11

  • Li G, Pan Z, Gao S, He Y, Xia Q, Jin Y et al (2019) Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes & Genomics 41(10):1173–1181

    Article  CAS  Google Scholar 

  • Lin M, Bing, Zhu Z, Haiyan Z, Shufang L, Xiaosheng Y (2012) Study on analgesic pharmacological action of alcohol extract of Ethnomedicine Laportea bulbifera. J Guiyang Univ Chinese Med 34(01):24–26 (in Chinese)

    Google Scholar 

  • Liu C, Huang Y, Wu F, Liu W, Liang Y (2021a) Plant adaptability in karst regions. J Plant Res 134(5):1–18

    Article  Google Scholar 

  • Liu C, Huang Y, Wu F, Liu W, Ning Y, Huang Z et al (2021b) Plant adaptability in karst regions. J Plant Res 134(5):889–906

    Article  PubMed  Google Scholar 

  • Liu J, Jiang M, Chen H, Liu Y, Wu W (2021c). Comparative genome analysis revealed gene inversions, boundary expansion and contraction, and gene loss in Stemona sessilifolia (Miq.) Miq. chloroplast genome. Plos One

  • Liu H, Lu Y, Lan B, Xu J (2020) Codon usage by chloroplast gene is bias in Hemiptelea davidii. J Genet 99(1):1–11

    Article  Google Scholar 

  • Liu Y, Huo N, Dong L, Wang Y, Zhang S, Young HA et al (2013) Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants. PLoS ONE 8(2):e57533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J-L, Li W-J, Hou W-R, Lan Y, Zhou H, Yin L-J et al (2012) Study on effect of total coumarins from Urtica dentata on dextran sulfate sodium-induced colitis in mice. Zhongguo Zhong yao za zhi Zhongguo Zhongyao Zazhi China Journal of Chinese Materia Medica 37(21):3316–3320

    CAS  PubMed  Google Scholar 

  • Luo C, Huang W, Sun H, Yer H, Li X, Li Y et al (2021) Comparative chloroplast genome analysis of Impatiens species (Balsaminaceae) in the karst area of China: insights into genome evolution and phylogenomic implications. BMC Genomics 22(1):1–18

    Article  Google Scholar 

  • Luo X, Li LL, Zhang SS, Lu JL, Ying Z, Zhang HY et al (2011) Therapeutic effects of total coumarins from Urtica dentata Hand on collagen-induced arthritis in Balb/c mice. J Ethnopharmacol 138(2):523–529

    Article  CAS  PubMed  Google Scholar 

  • Marc L, Oliver D, Sabine K, Ralph B (2013) OrganellarGenomeDRAWa suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41(W1):W575-81

    Article  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15(1):8–15

    Article  CAS  Google Scholar 

  • Qing-wen S, Wen-fen X, Wei-na Q, Shun-zhi H, Bo W, Sheng-hua W (2015) Morphological variation of germplasm resources of Miao Medicine Hong Hema. Seed 34(04):59–63

    Google Scholar 

  • QingXin S. (2018). Study on hypidemic mechanism of Honghema and its pharmacodynamic substances. Hubei University Of Traditional Chinese Medicine

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34(12):3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. User Manual Ver 2:2496–2497

    Google Scholar 

  • Shahzadi I, Mehmood F, Ali Z, Malik MS, Waseem S, Mirza B et al (2019) Comparative analyses of chloroplast genomes among three Firmiana species: identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. Plant Gene 19:100199

    Article  Google Scholar 

  • Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S et al (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22(8):1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L et al (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(W1):W65–W73. https://doi.org/10.1093/nar/gkz345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Zhao J, Wang Z (2020) The complete chloroplast genome of Hordeum brevisubulatum. Mitochondrial DNA Part B 5(3):3006–3007

    Article  Google Scholar 

  • Su Z, Zhao Z, Xie S, Hou W-R, Tao E, Xiang M (2009) Effects of analgesia, anti-inflammation and immunosuppression of acetic ether extract of Chinese medicine honghuoma. Chin Pharmacol Bull (chinese) 25(4):559–560

    Google Scholar 

  • Sun H, Deng T, Chase M, et al. (2015a). Generic phylogeny and character evolution in Urticeae (Urticaceae) inferred from nuclear and plastid DNA regions. Taxon

  • Sun Q, Xu W, Qi W, Bai C, Wei S (2015b) Study on the crude drug identification of honghema and Laportea Gaudich. Journal of Chinese Medicinal Materials 38(09):1862–1867 (in Chinese)

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 40. Molecular Biology and Evolution 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wu D, Chen S, Li Y, Li J, Gong Z et al (2018) Identification of chemical compositions in Laportea bulbifera by UPLC-ESI-Q-TOF-MS. Chin J Exp Tradit Med Formul 24:67–72

    Google Scholar 

  • Tao D. (2015). Origin and diversification of important character taxa in the East Asian flora. Yunnan University

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94(3):302–312

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu J, Lan Y, Zhou H, Li W, Xiang M (2013) Total coumarins from Urtica dentata Hand prevent murine autoimmune diabetes via suppression of the TLR4-signaling pathways. J Ethnopharmacol 146(1):379–392

    Article  CAS  PubMed  Google Scholar 

  • Wang R., Milne RI., Du XY., Liu J., Wu Z. Y. (2020). Characteristics and mutational hotspots of plastomes in Debregeasia (Urticaceae). Front Gene, 11

  • Wei-na Q, Wen-fen X, Qing-wen S, Shun-zhi H, Sheng-hua W (2013) Study on Laportea plants. Guizhou. Science 31(05):61–64+82 (in Chinese)

    Google Scholar 

  • Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H et al (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L., Nie L., Guo S., Wang Q., Wu Z., Lin Y., et al. (2022). Identification of medicinal bidens plants for quality control based on organelle genomes. Frontiers in pharmacology, 13

  • Wu Z-Y, Monro AK, Milne RI, Wang H, Yi T-S, Liu J et al (2013a) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol Phylogenet Evol 69(3):814–827. https://doi.org/10.1016/j.ympev.2013.06.022

    Article  PubMed  Google Scholar 

  • Wu ZY, Monro AK, Milne RI, Wang H, Li DZ (2013b) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol Phylogenet Evol 69:814–827

    Article  PubMed  Google Scholar 

  • Xiang L. (2010). Anti-inflmatory effect and Immune-tolerance mechanism of Hongmasu. Huazhong University of Science and Technology

  • Xiang M, Jingli LU, Zhang C, Lan Y, Zhou H, Xiping LI et al (2013) Identification and quantification of total coumarins from Urtica dentata Hand and its roles in promoting immune tolerance via TLR4-mediated dendritic cell immaturation. J Agri Chem Soc Japan 77(6):1200–1206

    CAS  Google Scholar 

  • Xiang M, Tao E, Ghu T (2006) Preliminary study on peventing effects of the active component of Honghuoma on CIA model. Chinese J Hospital Pharm 26(10):1201

    Google Scholar 

  • Yang XW, Henry RJ, Rossetto W et al. (2015). Plant DNA barcoding: from gene to genome. BIOL REV, 2015,90(1)(-), 157–166

  • Yanbo C (2020) Observation on the effect of ibastin tablets, runzao antipruritus capsule and calamine lotion in the treatment of senile pruritus. Contemporary Med 26:171–172 (in Chinese)

    Google Scholar 

  • Yao Y. (2008). Study on the therapeutic effect and mechanism of effective parts of honghuoma on rheumatoid arthritis. Huazhong University of Science and Technology

  • Zengyu Z. (2009). Study on preparation of total flavonoids of honghuoma and its effect on T2DM-IR., Huazhong University of Science and Technology

  • Zhang Z., Zhang Y., Song M., Guan Y., & Ma X. (2019). Species identification of Dracaena using the complete chloroplast genome as a super-barcode. Front Pharmacol, 1441

  • Zhao F, Chen Y, Salmaki Y, Drew BT., Xiang CL (2021). An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol, 19

  • Zhu Z, Ma L, Zhu H, Yang X, Hao X (2011) Studies on the chemical constituents of Laportea bulbifera. Zhong yao cai Zhongyaocai J Chinese Med Mater 34(2):223–225

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank my supervisor, LX, for her guidance during this research. I would also like to thank my tutors, LW, YS, QY, RG, and MW, for their valuable guidance throughout my studies. I would particularly like to acknowledge my teammate, CL, GD, and TW for their wonderful collaboration and patient support.

Funding

This research was funded by the National Natural Science Foundation of China and Karst Science Research Center of Guizhou Province (U1812403-1), National Key R&D Program of China from the Ministry of Science and Technology of China (grant No. 2019YFC1711100), the CACMS Innovation Fund (CI2021A05103). National Natural Science Foundation of China (81891010, 81891013).

Author information

Authors and Affiliations

Authors

Contributions

LX acquired the funding and conceived the research. WW and LX collected plant material. WW analyzed the data. WW and XW contributed equally to this manuscript. LX revised the manuscript. LW, YS, QY, RG, and MW provide guidance in the analysis and manuscript writing process. WW edited and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Li Xiang or Lan Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Izabela Pawłowicz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 895 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, X., Shi, Y. et al. Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode. J Appl Genetics 64, 231–245 (2023). https://doi.org/10.1007/s13353-022-00746-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-022-00746-4

Keywords

Navigation