Skip to main content
Log in

Analysis of a Convective Storm Crossing Poyang Lake in China

  • Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A convective storm crossing Poyang Lake (PL) in China during 1200-1600 UTC on 13 May 2015 is examined. The results show that this storm occurs ahead of a 500-hPa trough with weak low-level temperature advection and a convectively stable layer between 925 and 850 hPa, and the tail of the storm is enhanced when its spearhead sweeps over PL after the sunset. Due to the heating and moistening of PL, the convectively stable layer over PL is destabilized; and instead, a deep (below 700 hPa) convectively unstable layer is organized. Moreover, both the radiative cooling and the storm-induced cooling result in a rapid air (near-surface) and land temperature decrease in the surrounding areas. Thus, a large lake-land temperature difference (about 6°C) occurs, which is conducive to generating land-lake breeze and enhancing the convergence of the low-level wind. Finally, the PL-induced deep convectively unstable layer and the enhanced low-level convergence jointly strengthen the crossing storm. To further confirm this, two simulations (with or without PL) are conducted with the Weather Research and Forecast (WRF) model. The simulation with PL successfully reproduces the evolution of the storm crossing PL, while the simulation without PL fails. In the simulation with PL, a high θse tongue at 850 hPa associated with the storm moves eastward and downward, and merges with the PL-induced lake boundary layer, forming a deep convectively unstable layer under 700 hPa. However, in the simulation without PL, the stable layer constantly maintains under 900 hPa. In addition, the 900-hPa wind difference between the simulations with and without PL shows a land-lake breeze circulation that strengths the convergence of the low-level wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alcott, T. I., W. J. Steenburgh, and N. F. Laird, 2012: Great Salt Lake-effect precipitation: Observed frequency, characteristics, and associated environmental factors. Wea. Forecasting, 27, 954–971, doi: 10.1175/waf-d-12-00016.1.

    Google Scholar 

  • Angel, J. R., and S. A. Isard, 1998: The frequency and intensity of Great Lake cyclones. J. Climate, 11, 61–71, doi: 101175/1520-0442(1998)011<0061:tfaiog>2.0.co;2.

    Google Scholar 

  • Ballentine, R. J., G. P. Byrd, and T. A. Niziol, 1993: An operational forecast model for lake-effect snowstorms. Thirteenth Conference on Weather Analysis and Forecasting, Vienna, VA, 2–6 August, Amer. Meteor. Soc, 154–157.

    Google Scholar 

  • Barthold, F. E., and D. A. R. Kristovich, 2011: Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Wea. Rev., 139, 2386–2398, doi: 10.1175/mwr-d-10-05001.1.

    Google Scholar 

  • Byrd G. P., R. A. Anstett, J. E. Heim, et al, 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 2323–2332, doi: 10.1175/1520-0493(1991)119<2323:msoole>2.0.co;2.

    Google Scholar 

  • Cao, J. H., X. M. Liu, G. P. Li, et al., 2015: Analysis of the phenomenon of lake-land breeze in Poyang lake area. Plateau Meteor., 34, 426–435. (in Chinese)

    Google Scholar 

  • Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8 181–193, doi: 10.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;2.

    Google Scholar 

  • Dockus, D. A., 1985: Lake effect snow forecasting in the computer age. Natl. Wea. Dig., 10, 5–19.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 47, 543–565, doi: 10.1175/MWR-D-18-0102.1.

    Google Scholar 

  • Fu, M. N., Y. F. Zheng, H. B. Zou, et al, 2013: Analysis on weakening process of convective system passing over Poyang Lake in summer. Plateau Meteor, 32, 865–873. (in Chinese)

    Google Scholar 

  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250, doi: 10.5194/acp-14-5233-2014.

    Google Scholar 

  • Gu, H. P., Z. G. Ma, and M. X. Li, 2016: Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos., 121, 8832–8848, doi: 10.1002/2015JD024098.

    Google Scholar 

  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138–150, doi: 10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    Google Scholar 

  • Holroyd, E. W. III, 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 1165–1170, doi: 10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    Google Scholar 

  • Kristovich, D. A. R., and M. L. Spinar, 2005: Diurnal variations in lake-effect precipitation near the western Great Lakes. J. Hydrometeor, 6, 210–218, doi: 10.1175/JHM403.1.

    Google Scholar 

  • Kristovich, D. A. R., L. Bard, and L. Stoecker, 2018: Influence of Lake Erie on a Lake Ontario lake-effect snowstorm. J. Appl. Meteor. Climatol, 57, 2019–2033, doi: 10.1175/JAMC-D-17-0349.1.

    Google Scholar 

  • Laird, N. F., 1999: Observation of coexisting mesoscale lake-effect vortices over the western Great Lakes. Mon. Wea. Rev., 127, 1137–1141, doi: 101175152004931999)127<1137OOCMLE>2.0.CO;2.

    Google Scholar 

  • Laird, N. F., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol, 48, 232–250, doi: 1011752008JAMC1923.1.

    Google Scholar 

  • Laird, N., R. Sobash, and N. Hodas, 2010: Climatological conditions of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol, 49, 1052–1062, doi: 10.1175/2010jamc2312.1.

    Google Scholar 

  • Laird, N., A. M. Bentley, S. A. Ganetis, et al, 2016: Climatology of lake-effect precipitation events over Lake Tahoe and Pyramid Lake. J. Appl. Meteor. Climatol, 55, 297–312, doi: 10.1175/JAMC-D-14-0230.1.

    Google Scholar 

  • Lang, C. E., J. M. McDonald, L. Gaudet, et al, 2018: The Influence of a lake-to-lake connection from Lake Huron on the lake-effect snowfall in the vicinity of Lake Ontario. J. Appl. Meteor. Climatol, 57, 1423–1439, doi: 10.1175/JAMC-D-17-0225.1.

    Google Scholar 

  • Li, Y. L., J. Yao, X. L. Zhang, et al., 2017: Study on the vertical stratification in Poyang Lake. Resour. Environ. Yangtze Basin, 26, 915–924, doi: 10.11870/cjlyzyyhj201706014. (in Chinese)

    Google Scholar 

  • Liang, X. D., 2007: An integrating velocity-azimuth process single-Doppler radar wind retrieval method. J. Atmos. Oceanic Technol, 24, 658–665, doi: 10.1175/jtech2047.1.

    Google Scholar 

  • Lombardo, K. A., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U. S. coast. Mon. Wea. Rev., 140, 3805–3819, doi: 101175/MWR-D-12-00050.1.

    Google Scholar 

  • Lu, N. P., S. M. Li, N. Zhang, et al., 1988: The calculation of momentum, sensible and latent heat fluxes by bulk transfer method and sodar measurements. Proc. US-PRC International TOGA Symposium, China Ocean Press, Beijing, 251–262.

    Google Scholar 

  • Markowski, P., and Y. Richardson, 2010: Mesoscale instabilities. Mesoscale Meteorology in Midlatitudes, P. Markowski, and Y. Richardson, Eds., John Wiley & Sons, Ltd, Chichester, West Sussex, UK, 97 pp, doi: 10.1002/9780470682104.ch3.

    Google Scholar 

  • McMillen, J. D., and W. J. Steenburgh, 2015: Impact of micro-physics parameterizations on simulations of the 27 October 2010 Great Salt Lake-effect snowstorm. Wea. Forecasting, 30, 136–152, doi: 10.1175/WAF-D-14-00060.1.

    Google Scholar 

  • Metz, N. D., 2011: Persistence and dissipation of Lake Michigan-crossing mesoscale convective systems. Ph.D. dissertation, University at Albany, State University of New York, Albany, NY, 237 pp.

    Google Scholar 

  • Miner, T. J., and J. M. Fritsch, 1997: Lake-effect rain events. Mon. Wea. Rev., 125, 3231–3248, doi: 10.1175/1520-0493(1997)125<3231:LERE>2.0.CO;2.

    Google Scholar 

  • Moore, P. K., and R. E. Orville, 1990: Lightning characteristics in lake-effect thunderstorms. Mon. Wea. Rev., 118, 1767–1782, doi: 10.1175/1520-0493(1990)118<1767:LCILET>2.0.CO;2.

    Google Scholar 

  • Owens, N. D., R. M. Rauber, B. F. Jewett, et al., 2017: The contribution of lake enhancement to extreme snowfall within the Chicago-Milwaukee urban corridor during the 2011 Groundhog Day blizzard. Mon. Wea. Rev., 145, 2405–2420, doi: 10.1175/mwr-d-17-0025.1.

    Google Scholar 

  • Payer, M., J. Desrochers, and N. F. Laird, 2007: A lake-effect snowband over Lake Champlain. Mon. Wea. Rev., 135 3895–3900, doi: 10.1175/2007mwr2031.1.

    Google Scholar 

  • Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646–652, doi: 10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.

    Google Scholar 

  • Rodriguez, Y., D. A. R. Kristovich, and M. R. Hjelmfelt, 2007: Lake-to-lake cloud bands: Frequencies and locations. Mon. Wea. Rev., 135, 4202–4213, doi: 10.1175/2007mwr1960.1.

    Google Scholar 

  • Rose, B. L. Jr., 2001: The role of upstream lakes in determining downstream severe lake-effect snowstorms. Ph.D. dissertation, University of Illinois at Urbana-Champaign, Champaign, 182 pp.

    Google Scholar 

  • Ruhf, R. J., and E. M. C. Cutrim, 2003: Time series analysis of 20 years of hourly precipitation in southwest Michigan. J. Great Lakes Res., 29, 256–267, doi: 10.1016/s0380-1330(03)70431-6.

    Google Scholar 

  • Schoenberger, L. M., 1986: Mesoscale features of the Michigan land breeze using PAM II temperature data. Wea. Forecasting, 1, 127–135, doi: 101175152004341986001<0127MFOTML>2.0.CO;2.

    Google Scholar 

  • Schroeder, J. J., D. A. R. Kristovich, and M. R. Hjelmfelt, 2006: Boundary layer and microphysical influences of natural cloud seeding on a lake-effect snowstorm. Mon. Wea. Rev., 134, 1842–1858, doi: 10.1175/mwr3151.1.

    Google Scholar 

  • Shankman, D., B. D. Keim, T. Nakayama, et al., 2012: Hydrocli-mate analysis of severe floods in China’s Poyang Lake region. Earth Interactions, 16, 1–16, doi: 10.1175/2012EI000455.1.

    Google Scholar 

  • Slemmer, J. W., 1998: Characteristics of winter snowstorms near Salt Lake City as deduced from surface and radar observations. Master dissertation, Dept. of Meteorology, University of Utah, Utah, 138 pp.

    Google Scholar 

  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709–727, doi: 10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    Google Scholar 

  • Wan, J. S., D. M. Lyu, and F. J. Liu, 1994: Summer temperature field and its temperature effect in Poyang Lake. Quart. J. Appl. Meteor, 5, 374–379. (in Chinese)

    Google Scholar 

  • Wang, J. H., Y. Y. Yang, C. S. Miao, et al, 2017: The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in South China coast. Chinese J. At-mos. Sci., 41, 784–796, doi: 10.3878/j.issn.1006-9895.1702.16182. (in Chinese)

    Google Scholar 

  • Wang, R. Q., X. M. Liu, and W. D. Guo, 2016: Observation analyses of the lake-land-atmosphere interaction in Poyang Lake region. J. Trop. Meteor, 32, 558–569, doi: 1016032j.issn.1004-4965.2016.04.013. (in Chinese)

    Google Scholar 

  • Wiggin, B. L., 1950: Great snowstorms of the Great Lakes. Weatherwise, 3, 123–126, doi: 101080/0043167219509927065.

    Google Scholar 

  • Workoff, T. E., D. A. R., Kristovich, N. F. Laird, et al, 2012: Influence of the Lake Erie overlake boundary layer on deep convective storm evolution. Wea. Forecasting, 27, 1279–1289, doi: 10.1175/WAF-D-11-00076.1.

    Google Scholar 

  • Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes Region. Mon. Wea. Rev., 141, 670–689, doi: 10.1175/MWR-D-12-00038.1.

    Google Scholar 

  • Wu, S. S., H. B. Zou, and J. S. Shan, 2018: The effects of different cumulus parameterizations and microphysics schemes in WRF on Typhoon Matmo track after landing. Torr. Rain Disas., 37, 41–47, doi: 103969j.issn.1004-9045201801006. (in Chinese)

    Google Scholar 

  • Xiao, Y. J., L. P. Liu, and Y. Shi, 2008: Study of methods for three-dimensional multiple-radar reflectivity mosaics. Aca Meteor. Sinica, 22, 351–361.

    Google Scholar 

  • Xu, A. H., Z. C. Ye, L. C. Ouyang, et al, 2006: The diagnostic analysis of the track and precipitation of Typhoon “Rananim” after landfall. J. Trop. Meteor, 22, 229–236, doi: 10.3969/j.issn.1004-4965.2006.03.004. (in Chinese)

    Google Scholar 

  • Xu, H. S., and X. F. Ouyang, 1989: The water temperature of Poyang Lake. Oceanologia et Limnologia Sinica, 20, 343–353. (in Chinese)

    Google Scholar 

  • Zou, H. B., S. W. Zhang, X. D. Liang, et al., 2018: Improved algorithms for removing isolated non-meteorological echoes and ground clutters in CINRAD. J. Meteor. Res., 32 584–597, doi: 10.1007/s13351-018-7176-9.

    Google Scholar 

  • Zou, H. B., S. S. Wu, J. S. Shan, et al, 2019: A method of radar echo extrapolation based on TREC and Barnes filter. J. Atmos. Oceanic Technol, 36, 1713–1727, doi: 10.1175/JTECH-D-18-0194.1.

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers and the Editor for their constructive comments, which have helped improve this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Zhang.

Additional information

Supported by the National Natural Science Foundation of China (41865003, 41575098, and 41765001) and Jiangxi Provincial Department of Science and Technology Project (20171BBG70004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Zhang, S., Liu, Y. et al. Analysis of a Convective Storm Crossing Poyang Lake in China. J Meteorol Res 34, 529–545 (2020). https://doi.org/10.1007/s13351-020-9143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9143-5

Key words

Navigation