Skip to main content
Log in

Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects

  • Special Collection on Development and Applications of Regional and Global Land Data Assimilation Systems
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Since the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS) were established in 2004, significant progress has been made in development of regional and global LDASs. National, regional, project-based, and global LDASs are widely developed across the world. This paper summarizes and overviews the development, current status, applications, challenges, and future prospects of these LDASs. We first introduce various regional and global LDASs including their development history and innovations, and then discuss the evaluation, validation, and applications (from numerical model prediction to water resources management) of these LDASs. More importantly, we document in detail some specific challenges that the LDASs are facing: quality of the in-situ observations, satellite retrievals, reanalysis data, surface meteorological forcing data, and soil and vegetation databases; land surface model physical process treatment and parameter calibration; land data assimilation difficulties; and spatial scale incompatibility problems. Finally, some prospects such as the use of land information system software, the unified global LDAS system with nesting concept and hyper-resolution, and uncertainty estimates for model structure, parameters, and forcing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AghaKouchak, A., A. Farahmand, F. S. Melton, et al., 2015: Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophy., 53, 452–480, doi: 10.1002/2014RG000 456.

    Article  Google Scholar 

  • Albergel, C., J.-C. Calvet, J.-F. Mahfouf, et al., 2010: Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern France. Hydrol. Earth Syst. Sci., 14, 1109–1124, doi: 10.5194/hess-14-1109-2010.

    Article  Google Scholar 

  • Albergel, C., E. Dutra, S. Munier, et al., 2018: ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci., 22, 3515–3532, doi: 10.5194/hess-22-3515-2018.

    Article  Google Scholar 

  • Al-Yaari, A., J.-P. Wigneron, A. Ducharne, et al., 2014: Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sen. Environ., 152, 614–626, doi: 10.1016/j.rse.2014.07.013.

    Article  Google Scholar 

  • Bai, W. K., X. L. Gu, S. L. Li, et al., 2018: The performance of multiple model-simulated soil moisture datasets relative to ECV satellite data in China. Water, 10, 1384, doi: 10.3390/w10101384.

    Article  Google Scholar 

  • Baldocchi, D., E. Falge, L. H. Gu, et al., 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    Article  Google Scholar 

  • Balsamo, G., J.-F. Mahfouf, S. Bélair, et al., 2007: A land data assimilation system for soil moisture and temperature: An information content study. J. Hydrometeor., 8, 1225–1242, doi: 10.1175/2007JHM819.1.

    Article  Google Scholar 

  • Balsamo, G., C. Albergel, A. Beljaars, et al., 2015: ERA-interim/land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389–407, doi: 10.5194/hess-19-389-2015.

    Article  Google Scholar 

  • Bateni, S. M., and D. Entekhabi, 2012: Relative efficiency of land surface energy balance components. Water Resour. Res., 48, W04510, doi: 10.1029/2011WR011357.

    Google Scholar 

  • Beck, H. E., A. de Roo, and A. I. J. M. van Dijk, 2015: Global maps of streamflow characteristics based on observations from several thousand catchments. J. Hydrometeor., 16, 1478–1501, doi: 10.1175/JHM-D-14-0155.1.

    Article  Google Scholar 

  • Beck, H. E., N. Vergopolan, M. Pan, et al., 2017a: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 6201–6217, doi: 10.5194/hess-21-6201-2017.

    Article  Google Scholar 

  • Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, et al., 2017b: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589–615, doi: 10.5194/hess-21-589-2017.

    Article  Google Scholar 

  • Beck, H. E., E. F. Wood, M. Pan, et al., 2018: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-17-0138.1.

    Google Scholar 

  • Bélair, S., L.-P. Crevier, J. Mailhot, et al., 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352–370, doi: 10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    Article  Google Scholar 

  • Bélair, S., R. Brown, J. Mailhot, et al., 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371–386, doi: 10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    Article  Google Scholar 

  • Bell, J. E., M. A. Palecki, C. B. Baker, et al., 2013: U.S. climate reference network soil moisture and temperature observations. J. Hydrometeor., 14, 977–988, doi: 10.1175/JHM-D-12-0146.1.

    Article  Google Scholar 

  • Berg, A. A., J. S. Famiglietti, J. P. Walker, et al., 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res. Atmos., 108, 4490, doi: 10.1029/2002JD003334.

    Article  Google Scholar 

  • Best, M. J., M. Pryor, D. B. Clark, et al., 2011: The Joint UK Land Environment Simulator (JULES), model description–Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677–699, doi: 10.5194/gmd-4-677-2011.

    Article  Google Scholar 

  • Best, M. J., G. Abramowitz, H. R. Johnson, et al., 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 1425–1442, doi: 10.1175/ JHM-D-14-0158.1.

    Article  Google Scholar 

  • Bowling, L. C., D. P. Lettenmaier, B. Nijssen, et al., 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 1: Experiment description and summary intercomparisons. Glob. Planet. Change, 38, 1–30, doi: 10.1016/S0921-8181(03)00003-1.

    Article  Google Scholar 

  • Brocca, L., S. Hasenauer, T. Lacava, et al., 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An inter-comparison and validation study across Europe. Remote Sens. Environ., 115, 3390–3408, doi: 10.1016/j.rse.2011.08.003.

    Article  Google Scholar 

  • Bromwich, D. H., and S. H. Wang, 2005: Evaluation of the NCEP-NCAR and ECMWF 15- and 40-yr reanalyses using rawin-sonde data from two independent Arctic field experiments. Mon. Wea. Rev., 133, 3562–3578, doi: 10.1175/MWR3043.1.

    Article  Google Scholar 

  • Broxton, P. D., X. B. Zeng, D. Sulla-Menashe, et al., 2014: A global land cover climatology using MODIS data. J. Appl. Meteor. Climatol., 53, 1593–1605, doi: 10.1175/JAMC-D-13-0270.1.

    Article  Google Scholar 

  • Burnash, R. J. C., R. L. Ferral, and R. A. McGuire, 1973: A Generalized Streamflow Simulation System-Conceptual Modeling for Digital Computer. Technical Report, Joint Fed.–State River Forecast Cent., U. S. Natl. Weather Serv. and California Dep. of Water Resoure, Sacramento, CA, USA, 204 pp.

    Google Scholar 

  • Carrera, M. L., S. Bélair, and B. Bilodeau, 2015: The Canadian land data assimilation system (CaLDAS): Description and synthetic evaluation study. J. Hydrometeor., 16, 1293–1314, doi: 10.1175/JHM-D-14-0089.1.

    Article  Google Scholar 

  • Case, J. L, S. V. Kumar, J. Srikishen, et al., 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution ini-tializationof the surface state. Wea. Forecasting, 26, 785–807, doi: 10.1175/2011WAF2222455.1.

    Article  Google Scholar 

  • Case, J. L., F. J. Lafontaine, J. R. Bell, et al., 2014: A real-time MODIS vegetation product for land surface and numerical weather prediction models. IEEE Trans. Geosci. Remote Sens., 52, 1772–1786, doi: 10.1109/TGRS.2013.2255059.

    Article  Google Scholar 

  • Chakrabarti, S., T. Bongiovanni, T. Judge, et al., 2017: Assimilation of SMOS soil moisture for quantifying drought impacts on crop yield in agricultural regions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 3867–3879, doi: 10.1109/JSTARS.2014.2315999.

    Article  Google Scholar 

  • Chaudhuri, A. H., R. M. Ponte, and A. T. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air–sea fluxes. J. Climate, 27, 5411–5421, doi: 10.1175/JCLI-D-13-00424.1.

    Article  Google Scholar 

  • Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391–421, doi: 10.1023/A:1000531001463.

    Article  Google Scholar 

  • Chen, F., K. W. Manning, M. A. LeMone, et al., 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694–713, doi: 10.1175/JAM2463.1.

    Article  Google Scholar 

  • Chen, Y. Y., K. Yang, J. Qin, et al., 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 4466–4475, doi: 10.1002/jgrd.50301.

    Article  Google Scholar 

  • Clark, D. B., L. M. Mercado, S. Sitch, et al., 2011: The Joint UK Land Environment Simulator (JULES), model description. Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701–722, doi: 10.5194/gmd-4-701-2011.

    Article  Google Scholar 

  • Clark, M. P., B. Nijssen, J. D. Lundquist, et al., 2015a: A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 2498–2514, doi: 10.1002/2015WR017198.

    Article  Google Scholar 

  • Clark, M. P., B. Nijssen, J. D. Lundquist, et al., 2015b: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resour. Res., 51, 2515–2542, doi: 10.1002/2015WR017200.

    Article  Google Scholar 

  • Clewley, D., J. B. Whitcomb, R. Akbar, et al., 2017: A method for upscaling in situ soil moisture measurements to satellite footprint scale using random forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 2663–2673, doi: 10.1109/JS TARS.2017.2690220.

    Article  Google Scholar 

  • Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613–626, doi: 10.1016/j.jhydrol.2009.06.005.

    Article  Google Scholar 

  • Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: 10.1002/qj.776.

    Article  Google Scholar 

  • Cosgrove, B. A., D. Lohmann, K. E. Mitchell, et al., 2003a: Realtime and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos., 108, 8842, doi: 10.1029/2002JD003118.

    Article  Google Scholar 

  • Cosgrove, B. A., D. Lohmann, K. E. Mitchell, et al., 2003b: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res. Atmos., 108, 8845, doi: 10.1029/2002JD003316.

    Article  Google Scholar 

  • Crow, W. T., and E. F. Wood, 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137–149, doi: 10.1016/S0309-1708(02)00088-X.

    Article  Google Scholar 

  • Crow, W. T., A. A. Berg, M. H. Cosh, et al., 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, doi: 10.1029/2011RG000372.

    Article  Google Scholar 

  • Cui, C. Y., J. Xu, and J. Y. Zeng, 2018: Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens., 10, 33, doi: 10.3390/ rs10010033.

    Article  Google Scholar 

  • Dai, A. G., 2008: Temperature and pressure dependence of the rain–snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, doi: 10.1029/2008GL033295.

    Article  Google Scholar 

  • Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023, doi: 10.1175/BAMS-84-8-1013.

    Article  Google Scholar 

  • de Goncalves, L. G. G., W. J. Shuttleworth, E. J. Burke, et al., 2006: Toward a South America land data assimilation system: Aspects of land surface model spin-up using the simplified simple biosphere. J. Geophys. Res. Atmos., 111, D17110, doi: 10.1029/2005JD006297.

    Article  Google Scholar 

  • de Rosnay, P., 2017: Land Surface Data for Land Surface Analysis. ECMWF Data Assimilation Training Course, ECMWF, Reading, UK, 45 pp. Available at https://software.ecmwf.int/wiki/display/LDAS/LDAS+Home?preview=/27398058/76382811/Land_satellite_NWP_SAF_TC_2017.pdf.

    Google Scholar 

  • de Rosnay, P., G. Balsamo, C. Albergel, et al., 2014: Initialization of land surface variables for numerical weather prediction. Surv. Geophys., 35, 607–621, doi: 10.1007/s10712-012-9207-x.

    Article  Google Scholar 

  • de Wit, A. J. W., and C. A. van Diepen, 2007: Crop model data assimilation with the ensemble Kalman filter for improving regional crop yield forecasts. Agric. Forest Meteor., 146, 38–56, doi: 10.1016/j.agrformet.2007.05.004.

    Article  Google Scholar 

  • Decker, M., M. A. Brunke, Z. Wang, et al., 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 1916–1944, doi: 10.1175/JCLI-D-11-00004.1.

    Article  Google Scholar 

  • Dee, D. P., M. Balmaseda, G. Balsamo, et al., 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., 95, 1235–1248, doi: 10.1175/BAMS-D-13-00043.1.

    Article  Google Scholar 

  • Dente, L., G. Satalino, F. Mattia, et al., 2008: Assimilation of leaf area index derived from ASAR and MERIS data into CERES-wheat model to map wheat yield. Remote Sens. Environ., 112, 1395–1407, doi: 10.1016/j.rse.2007.05.023.

    Article  Google Scholar 

  • Derin, Y., and K. K. Yilmaz, 2014: Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeor., 1 5, 1498–1516, doi: 10.1175/JHM-D-13-0191.1.

    Article  Google Scholar 

  • Dharssi, I., K. J. Bovis, B. Macpherson, et al., 2011: Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci., 15, 2729–2746, doi: 10.5194/hess-15-2729-2011.

    Article  Google Scholar 

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, NCAR, Boulder, 72 pp, doi: 10.5065/D67W6959.

    Google Scholar 

  • Dietz, A. J., C. Kuenzer, U. Gessner, et al., 2012: Remote sensing of snow–a review of available methods. Int. J. Remote Sens., 33, 4094–4134, doi: 10.1080/01431161.2011.640964.

    Article  Google Scholar 

  • Ding, B. H., K. Yang, J. Qin, et al., 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154–163, doi: 10.1016/j.jhydrol.2014.03.038.

    Article  Google Scholar 

  • Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The global soil wetness project. Bull. Amer. Meteor. Soc., 80, 851–878, doi: 10.1175/1520-0477(1999)080<0851:TPPOTG>2.0.CO;2.

    Article  Google Scholar 

  • Dirmeyer, P. A., X. Gao, M. Zhao, et al., 2006: GSWP-2: Mul-timodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 1381–1398, doi: 10.1175/BAMS-87-10-1381.

    Article  Google Scholar 

  • Dorigo, W. A., W. Wagner, R. Hohensinn, et al., 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, doi: 10.5194/hess-15-1675-2011.

    Article  Google Scholar 

  • Dorigo, W. A., A. Xaver, M. Vreugdenhil, et al., 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone Journal, 12, 1–21, doi: 10.2136/vzj2012.0097.

    Article  Google Scholar 

  • Doycheva, K., G. Horn, C. Koch, et al., 2017: Assessment and weighting of meteorological ensemble forecast members based on supervised machine learning with application to runoff simulations and flood warning. Adv. Eng. Inform., 33, 427–439, doi: 10.1016/j.aei.2016.11.001.

    Article  Google Scholar 

  • Draper, C. S., R. H. Reichle, and R. D. Koster, 2018: Assessment of MERRA-2 land surface energy flux estimates. J. Climate, 31, 671–691, doi: 10.1175/JCLI-D-17-0121.1.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851, doi: 10.1029/2002JD00 3296.

    Article  Google Scholar 

  • Entin, J. K., A. Robock, K. Y. Vinnikov, et al., 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos., 105, 11865–11877, doi: 10.1029/2000JD900051.

    Article  Google Scholar 

  • Fan, Y. R., G. H. Huang, B. W. Baetz, et al., 2017: Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods. J. Hydrol., 550, 412–426, doi: 10.1016/j.jhy-drol.2017.05.010.

    Article  Google Scholar 

  • Fang, L., X. W. Zhan, C. R. Hain, et al., 2018: Impact of using near real-time green vegetation fraction in Noah land surface model of NOAA NCEP on numerical weather predictions. Adv. Meteor., doi: 10.1155/2018/9256396.

    Google Scholar 

  • Feng, L., J. Li, W. S. Gong, et al., 2016: Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ., 174, 56–68, doi: 10.1016/j.rse.2015. 11.031.

    Article  Google Scholar 

  • Ferguson, C. R., and D. M. Mocko, 2017: Diagnosing an artificial trend in NLDAS-2 afternoon precipitation. J. Hydrometeor., 18, 1051–1070, doi: 10.1175/JHM-D-16-0251.1.

    Article  Google Scholar 

  • Fischer, G., F. Nachtergaele, S. Prieler, et al., 2008: Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy. Available at http://www.fao.org/soils-portal/soil-survey/soil-maps-and-data-bases/harmonized-world-soil-database-v12/en/. Accessed on 31 March 2019.

    Google Scholar 

  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 1351–1367, doi: 10.1890/06-0922.1.

    Article  Google Scholar 

  • Frei, A., M. Tedesco, S. Lee, et al., 2012: A review of global satellite-derived snow products. Adv. Space Res., 50, 1007–1029, doi: 10.1016/j.asr.2011.12.021.

    Article  Google Scholar 

  • Friedl, M. A., D. Sulla-Menashe, B. Tan, et al., 2010: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168–182, doi: 10.1016/j.rse.2009.08.016.

    Article  Google Scholar 

  • Gao, S. G., Z. L. Zhu, H. T. Weng, et al., 2017: Upscaling of sparse in situ soil moisture observations by integrating auxiliary information from remote sensing. Int. J. Remote Sens., 38, 4782–4803, doi: 10.1080/01431161.2017.1320444.

    Article  Google Scholar 

  • Gruber, A., C.–H. Su, W. T. Crow, et al., 2016: Estimating error cross-correlations in soil moisture data sets using extended collocation analysis. J. Geophys. Res. Atmos., 121, 1208–1219, doi: 10.1002/2015JD024027.

    Article  Google Scholar 

  • Gupta, H. V., L. A. Bastidas, S. Sorooshian, et al., 1999: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. Atmos., 104, 19491–19503, doi: 10.1029/1999JD900154.

    Article  Google Scholar 

  • Hamilton, A. S., and R. D. Moore, 2012: Quantifying uncertainty in streamflow records. Can. Water Resour. J., 37, 3–21, doi: 10.4296/cwrj370186.

    Article  Google Scholar 

  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, et al., 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sen., 21, 1331–1364, doi: 10.1080/014311600210209.

    Article  Google Scholar 

  • Hao, Z. C., F. H. Hao, Y. L. Xia, et al., 2016a: A statistical method for categorical drought prediction based on NLDAS-2. J. Appl. Meteor. Climatol., 55, 1049–1061, doi: 10.1175/JAMC-D-15-0200.1.

    Article  Google Scholar 

  • Hao, Z. C., Y. Hong, Y. L. Xia, et al., 2016b: Probabilistic drought characterization in the categorical form using ordinal regression. J. Hydrol., 535, 331–339, doi: 10.1016/j.jhydrol.2016.01.074.

    Article  Google Scholar 

  • Hao, Z. C., X. Yuan, Y. L. Xia, et al., 2017: An overview of drought monitoring and prediction systems at regional and global scales. Bull. Amer. Meteor. Soc., 98, 1879–1896, doi: 10.1175/BAMS-D-15-00149.1.

    Article  Google Scholar 

  • Hao, Z. C., V. P. Singh, and Y. L. Xia, 2018: Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys., 56, 108–141, doi: 10.1002/2016RG000549.

    Article  Google Scholar 

  • Harmel, R. D., R. J. Cooper, R. M. Slade, et al., 2006: Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Transactions of the ASABE, 49, 689–701, doi: 10.13031/2013.20488.

    Article  Google Scholar 

  • Heim, Jr. R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 1149–1166, doi: 10.1175/1520-0477-83.8.1149.

    Article  Google Scholar 

  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, et al., 1995: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489–504, doi: 10.1175/1520-0477(1995)076<0489:TPFI-OL>2.0.CO;2.

    Article  Google Scholar 

  • Henry, F., D. E. Herwindiati, S. Mulyono, et al., 2017: Sugarcane land classification with satellite imagery using logistic regression model. IOP Conference Series: Materials Science and Engineering, 185, 012024, doi: 10.1088/1757-899X/185/1/012 024.

    Article  Google Scholar 

  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 1–7.

    Google Scholar 

  • Hu, Q., and S. Feng, 2003: A daily soil temperature dataset and soil temperature climatology of the contiguous United States. J. Appl. Meteor., 42, 1139–1156, doi: 10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2.

    Article  Google Scholar 

  • Hu, Q., S. Feng, and G. Schaefer, 2002: Quality control for USDA NRCS SM-ST network soil temperatures: A method and a dataset. J. Appl. Meteor., 41, 607–619, doi: 10.1175/1520-0450(2002)041<0607:QCFUNS>2.0.CO;2.

    Article  Google Scholar 

  • Jacobs, C. M. J., E. J. Moors, H. W. Ter Maat, et al., 2008: Evaluation of European Land Data Assimilation System (ELDAS) products using in situ observations. Tellus A, 60, 1023–1037, doi: 10.1111/j.1600-0870.2008.00351.x.

    Article  Google Scholar 

  • Jiménez, C., C. Prigent, B. Mueller, et al., 2011: Global intercom-parison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos., 116, D02102, doi: 10.1029/2010JD014545.

    Article  Google Scholar 

  • Jiménez-Muñoz, J. C., and J. A. Sobrino, 2006: Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote Sens., 27, 999–1014, doi: 10.1080/01431160500075907.

    Article  Google Scholar 

  • Jin, X. L., Z. H. Li, G. J. Yang, et al., 2017: Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS J. Photogram. Remote Sens., 126, 24–37, doi: 10.1016/j.isprsjprs.2017.02.001.

    Article  Google Scholar 

  • Jones, J. W., G. Hoogenboom, C. H. Porter, et al., 2003: The DSSAT cropping system model. Eur. J. Agron., 18, 235–265, doi: 10.1016/S1161-0301(02)00107-7.

    Article  Google Scholar 

  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013, doi: 10.5194/bg-6-2001-2009.

    Google Scholar 

  • Jung, M., M. Reichstein, P. Ciais, et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954, doi: 10.1038/nature09396.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644, doi: 10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kang, J., R. Jin, X. Li, et al., 2018: Spatial upscaling of sparse soil moisture observations based on ridge regression. Remote Sens., 10, 192, doi: 10.3390/rs10020192.

    Article  Google Scholar 

  • Kato, S., F. G. Rose, D. A. Rutan, et al., 2018: Surface irradiances of edition 4.0 clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) data product. J. Climate, 31, 4501–4527, doi: 10.1175/JCLI-D-17-0523.1.

    Article  Google Scholar 

  • Kerr, Y. H., 2007: Soil moisture from space: Where are we? Hydrogeol. J., 15, 117–120, doi: 10.1007/s10040-006-0095-3.

    Article  Google Scholar 

  • Khaki, M., F. Hamilton, E. Forootan, et al., 2018: Nonparametric data assimilation scheme for land hydrological applications. Water Resour. Res., 54, 4946–4964, doi: 10.1029/2018WR 022854.

    Article  Google Scholar 

  • Kitanidis, P. K., and R. L. Bras, 1980: Real-time forecasting with a conceptual hydrologic model: 2. Applications and results. Water Resour. Res., 16, 1034–1044, doi: 10.1029/WR016i006p01034.

    Article  Google Scholar 

  • Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reana-lysis: General specifications and basic characteristics. J. Meteor. Soc. Japan Ser. II, 93, 5–48, doi: 10.2151/jmsj.2015-001.

    Article  Google Scholar 

  • Komma, J., G. Blöschl, and C. Reszler, 2008: Soil moisture updating by ensemble Kalman filtering in real-time flood forecasting. J. Hydrol., 357, 228–242, doi: 10.1016/j.jhydrol.2008. 05.020.

    Article  Google Scholar 

  • Konzelmann, T., D. R. Cahoon, and C. H. Whitlock, 1996: Impact of biomass burning in equatorial Africa on the downward surface shortwave irradiance: Observations versus calculations. J. Geophys. Res. Atmos., 101, 22833–22844, doi: 10.1029/ 96JD01556.

    Article  Google Scholar 

  • Koster, R. D., and M. J. Suarez, 1994: The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 61–78, doi: 10.1016/0309-1708(94)90024-8.

    Article  Google Scholar 

  • Koster, R. D., M. J. Suarez, A. Ducharne, et al., 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res. Atmos., 105, 24809–24822, doi: 10.1029/2000JD900327.

    Article  Google Scholar 

  • Kumar, S. V., C. D. Peters-Lidard, Y. Tian, et al., 2006: Land Information System—An interoperable framework for high resolution land surface modeling. Environ. Model. Soft., 21, 1402–1415, doi: 10.1016/j.envsoft.2005.07.004.

    Article  Google Scholar 

  • Kumar, S. V., R. H. Reichle, R. D. Koster, et al., 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 1534–1547, doi: 10.1175/2009JHM1134.1.

    Article  Google Scholar 

  • Kumar, S. V., C. D. Peters-Lidard, D. Mocko, et al., 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 2446–2469, doi: 10.1175/JHM-D-13-0132.1.

    Article  Google Scholar 

  • Kumar, S. V., M. Jasinski, D. Mocko, et al., 2018: NCA-LDAS land analysis: Development and performance of a multi-sensor, multivariate land data assimilation system for the National Climate Assessment. J. Hydrometeor., doi: 10.1175/ JHM-D-17-0125.1.

    Google Scholar 

  • Lahoz, W. A., and P. Schneider, 2014: Data assimilation: Making sense of earth observation. Front. Environ. Sci., 2, 16, doi: 10.3389/fenvs.2014.00016.

    Article  Google Scholar 

  • Laloyaux, P., M. Balmaseda, D. Dee, et al., 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 65–78, doi: 10.1002/qj.2629.

    Article  Google Scholar 

  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi: 10.1029/2011MS00045.

    Google Scholar 

  • Lawston, P. M., J. A. Santanello, Jr. B. F. Zaitchik, et al., 2015: Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. J. Hydrometeor., 16, 1135–1154, doi: 10.1175/JHM-D-14-0203.1.

    Article  Google Scholar 

  • Lee, D. E., and M. Biasutti, 2014: Climatology and variability of precipitation in the twentieth-century reanalysis. J. Climate, 27, 5964–5981, doi: 10.1175/JCLI-D-13-00630.1.

    Article  Google Scholar 

  • Leng, G. Y., M. Y. Huang, Q. H. Tang, et al., 2013: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res. Atmos., 118, 9789–9803, doi: 10.1002/jgrd.50792.

    Article  Google Scholar 

  • Leng, G. Y., M. Y. Huang, Q. H. Tang, et al., 2015: A modeling study of irrigation effects on global surface water and ground-water resources under a changing climate. J. Adv. Model. Earth Syst., 7, 1285–1304, doi: 10.1002/2015MS000437.

    Article  Google Scholar 

  • Lewis, P., J. Gómez-Dans, T. Kaminski, et al., 2012: An earth observation land data assimilation system (EO-LDAS). Remote Sens. Environ., 120, 219–235, doi: 10.1016/j.rse.2011.12.027.

    Article  Google Scholar 

  • Li, R., C. J. Li, Y. Y. Dong, et al., 2011: Assimilation of remote sensing and crop model for LAI estimation based on ensemble Kalman filter. Agric. Sci. China, 10, 1595–1602, doi: 10.1016/S1671-2927(11)60156-9.

    Article  Google Scholar 

  • Li, X., C. L. Huang, C. Tao, et al., 2007: Development of a Chinese land data assimilation system: Its progress and prospects. Prog. Natural Sci., 17, 163–173. (in Chinese)

    Article  Google Scholar 

  • Li, X., S. M. Liu, H. X. Li, et al., 2018: Intercomparison of six up-scaling evapotranspiration methods: From site to the satellite pixel. J. Geophys. Res. Atmos., 123, 6777–6803, doi: 10.1029/ 2018JD028422.

    Article  Google Scholar 

  • Li, Y., Q. G. Zhou, J. Zhou, et al., 2014: Assimilating remote sensing information into a coupled hydrology–crop growth model to estimate regional maize yield in arid regions. Ecological Modelling, 291, 15–27, doi: 10.1016/j.ecolmodel.2014.07.013.

    Article  Google Scholar 

  • Li, Z. L., B. H. Tang, H. Wu, et al., 2013: Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ., 131, 14–37, doi: 10.1016/j.rse.2012.12.008.

    Article  Google Scholar 

  • Liang, S. L., K. C. Wang, X. T. Zhou, et al., 2010: Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 225–240, doi: 10.1109/JSTARS.2010.2048556.

    Article  Google Scholar 

  • Liang, X., D. P. Lettenmaier, E. F. Wood, et al., 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos., 99, 14415–14428, doi: 10.1029/94JD00483.

    Article  Google Scholar 

  • Liao, W. L., D. G. Wang, G. L. Wang, et al., 2019: Quality control and evaluation of the observed daily data in North American Soil Moisture Database. J. Meteor. Res., 33,, doi: 10.1007/s13351-019-8121-2.

  • Lim, Y.-J., K.-Y. Byun, T.-Y. Lee, et al., 2012: A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia. Asia–Pacific J. Atmos. Sci., 48, 83–95, doi: 10.1007/s13143-012-0008-4.

    Article  Google Scholar 

  • Liou, Y.-A., and S. K. Kar, 2014: Evapotranspiration estimation with remote sensing and various surface energy balance al-gorithms—A review. Energies, 7, 2821–2849, doi: 10.3390/en7052821.

    Article  Google Scholar 

  • Liu, S. M., Z. W. Xu, L. S. Song, et al., 2016: Upscaling evapo-transpiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. Forest Meteor., 230–231, 97–113, doi: 10.1016/j.agrformet.2016.04.008.

    Article  Google Scholar 

  • Liu, X. M., T. T. Yang, K. Hsu, et al., 2017: Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci., 21, 169–181, doi: 10.5194/hess-21-169-2017.

    Article  Google Scholar 

  • Liu, Y., A. H. Weerts, M. Clark, et al., 2012: Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci., 16, 3863–3887, doi: 10.5194/hess-16-3863-2012.

    Article  Google Scholar 

  • Livneh, B., Y. L. Xia, K. E. Mitchell, et al., 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721–738, doi: 10.1175/2009JHM1174.1.

    Article  Google Scholar 

  • Lohmann, D., K. E. Mitchell, P. R. Houser, et al., 2004: Stream-flow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res. Atmos., 109, D07S91, doi: 10.1029/2003JD003517.

    Article  Google Scholar 

  • Luo, L. F., A. Robock, K. E. Mitchell, et al., 2003: Validation of the North American Land Data Assimilation System (NL-DAS) retrospective forcing over the southern Great Plains. J. Geophys. Res. Atmos., 108, 8843, doi: 10.1029/2002JD00 3246.

    Google Scholar 

  • Ma, Y. P., S. L. Wang, L. Zhang, et al., 2008: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. Int. J. Appl. Earth Obs. Geoinfo., 10, 426–437, doi: 10.1016/j.jag.2007.09.002.

    Article  Google Scholar 

  • Machwitz, M., L. Giustarini, C. Bossung, et al., 2014: Enhanced biomass prediction by assimilating satellite data into a crop growth model. Environ. Model. Soft., 62, 437–453, doi: 10.1016/j.envsoft.2014.08.010.

    Article  Google Scholar 

  • Mahfouf, J. F., 2010: Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 136, 784–798, doi: 10.1002/qj.602.

    Google Scholar 

  • Martens, B., D. G. Miralles, H. Lievens, et al., 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 1903–1925, doi: 10.5194/gmd-10-1903-2017.

    Article  Google Scholar 

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, Am. Meteor. Soc., Anaheim, CA, USA, 179–184.

    Google Scholar 

  • McNally, A., K. Arsenault, S. Kumar, et al., 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 170012, doi: 10.1038/sdata.2017.12.

    Article  Google Scholar 

  • Meng, J., R. Q. Yang, H. L. Wei, et al., 2012: The land surface analysis in the NCEP climate forecast system reanalysis. J. Hydrometeor., 13, 1621–1630, doi: 10.1175/JHM-D-11-090.1.

    Article  Google Scholar 

  • Mesinger, F., G. DiMego, E. Kalnay, et al., 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi: 10.1175/BAMS-87-3-343.

    Article  Google Scholar 

  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interaction, 2, 1–26, doi: 10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2

    Article  Google Scholar 

  • Milly, P. C. D., S. L. Malyshev, E. Shevliakova, et al., 2014: An enhanced model of land water and energy for global hydrolo-gic and earth-system studies. J. Hydrometeor., 15, 1739–1761, doi: 10.1175/JHM-D-13-0162.1.

    Article  Google Scholar 

  • Miralles, D. G., T. R. H. Holmes, R. A. M. de Jeu, et al., 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453–469, doi: 10.5194/hess-15-453-2011.

    Article  Google Scholar 

  • Mitchell, K., P. Houser, E. Wood, et al., 1999: GCIP Land Data Assimilation System (LDAS) Project now underway. GEWEX News, 9, 3–6.

    Google Scholar 

  • Mitchell, K. E., D. Lohmann, P. R. Houser, et al., 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geo-phys. Res. Atmos., 109, D07S90, doi: 10.1029/2003JD003823.

    Google Scholar 

  • Mizukami, N., M. P. Clark, E. D. Gutmann, et al., 2016: Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models. J. Hy-drometeor., 17, 73–98, doi: 10.1175/JHM-D-14-0187.1.

    Google Scholar 

  • Mizukami, N., M. P. Clark, A. J. Newman, et al., 2017: Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res., 53, 8020–8040, doi: 10.1002/2017WR020401.

    Article  Google Scholar 

  • Mo, K. C., L. C. Chen, S. Shukla, et al., 2012: Uncertainties in North American land data assimilation systems over the contiguous United States. J. Hydrometeor., 13, 996–1009, doi: 10.1175/JHM-D-11-0132.1.

    Article  Google Scholar 

  • Mokhtari, A., H. Noory, and M. Vazifedoust, 2018: Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agric. Forest Meteor., 250–251, 159–170, doi: 10.1016/j.agr-formet.2017.12.250.

    Article  Google Scholar 

  • Mu, Q. Z., M. S. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 1781–1800, doi: 10.1016/j.rse.2011.02.019.

    Article  Google Scholar 

  • Mu, Q. Z., M. S. Zhao, J. S. Kimball, et al., 2013: A remotely sensed global terrestrial drought severity index. Bull. Amer. Meteor. Soc., 94, 83–98, doi: 10.1175/BAMS-D-11-00213.1.

    Article  Google Scholar 

  • Munier, S., A. Polebistki, C. Brown, et al., 2015: SWOT data assimilation for operational reservoir management on the upper Niger River basin. Water Resour. Res., 51, 554–575, doi: 10.1002/2014WR016157.

    Article  Google Scholar 

  • Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, et al., 2016: Benchmarking NLDAS-2 soil moisture and evapotranspira-tion to separate uncertainty contributions. J. Hydrometeor., 17, 745–759, doi: 10.1175/JHM-D-15-0063.1.

    Article  Google Scholar 

  • Nijssen, B., S. Shukla, C. Y. Lin, et al., 2014: A prototype Global Drought Information System based on multiple land surface models. J. Hydrometeor., 15, 1661–1676, doi: 10.1175/JHM-D-13-090.1.

    Article  Google Scholar 

  • Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109, doi: 10.1029/2010JD015139.

    Article  Google Scholar 

  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536–549, doi: 10.1175/1520-0493(1989)117<0536: ASPOLS>2.0.CO;2.

    Article  Google Scholar 

  • Nouvellon, Y., M. S. Moran, D. Lo Seen, et al., 2001: Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets. Remote Sens. Environ., 78, 131–149, doi: 10.1016/S0034-4257(01)00255-3.

    Article  Google Scholar 

  • Novick, K. A., J. A. Biederman, A. R. Desai, et al., 2018: The AmeriFlux network: A coalition of the willing. Agric. Forest Meteor., 249, 444–456, doi: 10.1016/j.agrformet.2017.10.009.

    Article  Google Scholar 

  • Oleson, K. W., G.-Y. Niu, Z.-L. Yang, et al., 2008: Improvements to the Community Land Model and their impact on the hydro-logical cycle. J. Geophys. Res. Biogeo., 113, G01021, doi: 10.1029/2007JG000563.

    Article  Google Scholar 

  • Onogi, K., J. Tsutsui, H. Koide, et al., 2007: The JRA-25 reanaly-sis. J. Meteor. Soc. Japan Ser. II, 85, 369–432, doi: 10. 2151/jmsj.85.369.

    Article  Google Scholar 

  • Osuri, K. K., R. Nadimpalli, U. C. Mohanty, et al., 2017: Improved prediction of severe thunderstorms over the Indian monsoon region using high-resolution soil moisture and temperature initialization. Scientific Reports, 7, 41377, doi: 10.1038/srep41377.

    Article  Google Scholar 

  • Palmer, W. C., 1965: Meteorological Drought. Research Paper No. 45, U.S. Weather Bureau, Washington, D. C., 58 pp.

    Google Scholar 

  • Pan, M., J. Sheffield, E. F. Wood, et al., 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res. Atmos., 108, 8850, doi: 10.1029/2003JD003994.

    Google Scholar 

  • Parastatidis, D., Z. Mitraka, N. Chrysoulakis, et al., 2017: Online global land surface temperature estimation from landsat. Remote Sens., 9, 1208, doi: 10.3390/rs9121208.

    Article  Google Scholar 

  • Pellenq, J., and G. Boulet, 2004: A methodology to test the pertinence of remote-sensing data assimilation into vegetation models for water and energy exchange at the land surface. Agro-nomie, 24, 197–204, doi: 10.1051/agro:2004017.

    Article  Google Scholar 

  • Peng, J., A. Loew, O. Merlin, et al., 2017: A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys., 55, 341–366, doi: 10.1002/2016RG000543.

    Article  Google Scholar 

  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, doi: 10.1175/BAMS-D-17-0036.1.

    Article  Google Scholar 

  • Penny, S. G., S. Akella, O. Alves, et al., 2017: Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges and Recommendations. World Weather Research Programme (WWRP 2017–3), World Meteorological Organization, Geneva, Switzerland, 59 pp.

    Book  Google Scholar 

  • Pinker, R. T., J. D. Tarpley, I. Laszlo, et al., 2003: Surface radiation budgets in support of the GEWEX continental-scale international project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American land data assimilation system (NLDAS) project. J. Geophys. Res. At-mos., 108, 8844, doi: 10.1029/2002JD003301.

    Google Scholar 

  • Qin, J., K. Yang, N. Lu, et al., 2013: Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens. Environ., 138, 1–9, doi: 10.1016/j.rse.2013.07.003.

    Article  Google Scholar 

  • Qin, J., L. Zhao, Y. Y. Chen, et al., 2015: Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. J. Hydrol., 523, 170–178, doi: 10.1016/j.jhydrol.2015.01.061.

    Article  Google Scholar 

  • Quiring, S. M., T. W. Ford, J. K. Wang, et al., 2016: The North American soil moisture database: Development and applications. Bull. Amer. Meteor. Soc., 97, 1441–1459, doi: 10.1175/BAMS-D-13-00263.1.

    Article  Google Scholar 

  • Rasmussen, R., B. Baker, J. Kochendorfer, et al., 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811–829, doi: 10.1175/BAMS-D-11-00052.1.

    Article  Google Scholar 

  • Reichle, R. H., and R. D. Koster, 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA catchment land surface model. Geophys. Res. Lett., 32, L02404, doi: 10.1029/2004GL021700.

    Article  Google Scholar 

  • Reichle, R. H., W. T. Crow, R. D. Koster, et al., 2008: Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett., 35, L01404, doi: 10.1029/2007 GL031986.

    Article  Google Scholar 

  • Reichle, R. H., G. J. M. De Lannoy, Q. Liu, et al., 2017a: Assessment of the SMAP level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeor., 18, 2621–2645, doi: 10.1175/JHM-D-17-0063.1.

    Article  Google Scholar 

  • Reichle, R., Q. Liu, R. D. Koster, et al., 2017b: Land surface precipitation in MERRA-2. J. Climate, 30, 1643–1664, doi: 10.1175/JCLI-D-16-0570.1.

    Article  Google Scholar 

  • Rennie, J. J., J. H. Lawrimore, B. E. Gleason, et al., 2014: The international surface temperature initiative global land surface databank: Monthly temperature data release description and methods. Geosci. Data J., 1, 75–102, doi: 10.1002/gdj3.8.

    Article  Google Scholar 

  • Reynolds, C. A., T. J. Jackson, and W. J. Rawls, 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Re-sour. Res., 36, 3653–3662, doi: 10.1029/2000WR900130.

    Article  Google Scholar 

  • Rienecker, M. M., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, doi: 10.1175/JCLI-D-11-00015.1.

    Article  Google Scholar 

  • Robock, A., L. F. Luo, E. F. Wood, et al., 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res. Atmos., 108, 8846, doi: 10.1029/2002JD003245.

    Google Scholar 

  • Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi: 10.1175/BAMS-85-3-381.

    Article  Google Scholar 

  • Saha, S., S. Moorthi, H.-L. Pan, et al., 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058, doi: 10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Saha, S., S. Moorthi, X. R. Wu, et al, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, doi: 10.1175/JCLI-D-12-00823.1.

    Article  Google Scholar 

  • Santanello, Jr. J. A., S. V. Kumar, C. D. Peters-Lidard, et al., 2016: Impact of soil moisture assimilation on land surface model spinup and coupled land–atmosphere prediction. J. Hydromet-eor., 17, 517–540, doi: 10.1175/JHM-D-15-0072.1.

    Article  Google Scholar 

  • Sawada, Y., and T. Koike, 2016: Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011). J. Geophy. Res. Atmos., 121, 8229–8242, doi: 10.1002/2015JD024705.

    Article  Google Scholar 

  • Schaake, J. C., Q. Y. Duan, V. Koren, et al., 2004: An intercom-parison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res. Atmos., 109, D01S90, doi: 10.1029/2002JD003309.

    Article  Google Scholar 

  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Oceanic Technol., 24, 2073–2077, doi: 10.1175/2007JTECHA930.1.

    Article  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud, et al., 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505–531, doi: 10.1175/1520-0469(1986) 043<0505:ASBMFU>2.0.CO;2.

    Article  Google Scholar 

  • Seo, D.-J., Y. Q. Liu, H. Moradkhani, et al., 2014: Ensemble prediction and data assimilation for operational hydrology. J. Hy-drol., 519, 2661–2662, doi: 10.1016/j.jhydrol.2014.11.035.

    Article  Google Scholar 

  • Sequera, P., J. E. González, K. McDonald, et al., 2016: Improvements in land-use classification for estimating daytime surface temperatures and sea-breeze flows in Southern California. Earth Interaction, 20, 1–32, doi: 10.1175/EI-D-14-0034.1.

    Article  Google Scholar 

  • Sheffield, J., M. Pan, E. F. Wood, et al., 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res. Atmos., 108, 8849, doi: 10.1029/2002 JD003274.

    Article  Google Scholar 

  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi: 10.1175/JCLI3790.1.

    Article  Google Scholar 

  • Shi, C. X., Z. H. Xie, H. Qian, et al., 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 1430–1440, doi: 10.1007/s11430-010-4160-3.

    Article  Google Scholar 

  • Shuttleworth, W. J., 2007: Putting the “vap” into evaporation. Hy-drol. Earth Syst. Sci., 11, 210–244, doi: 10.5194/hess-11-210-2007.

    Article  Google Scholar 

  • Singh, R. S., J. T. Reager, N. L. Miller, et al., 2015: Toward hyper-resolution land-surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations over the Southwestern U.S. Water Resour. Res., 51, 2648–2667, doi: 10.1002/2014WR015686.

    Article  Google Scholar 

  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884, doi: 10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    Article  Google Scholar 

  • Snauffer, A. M., W. W. Hsieh, and A. J. Cannon, 2016: Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol., 541, 714–726, doi: 10.1016/j.jhydrol.2016.07.027.

    Article  Google Scholar 

  • Sun, Q., C. Miao, Q. Duan, et al., 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparis-ons. Rev. Geophys., 56, 79–107, doi: 10.1002/rog.v56.1.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi: 10.1029/2000JD900719.

    Article  Google Scholar 

  • Troy, T. J., and E. F. Wood, 2009: Comparison and evaluation of gridded radiation products across northern Eurasia. Environ. Res. Lett., 4, 045008, doi: 10.1088/1748-9326/4/4/045008.

    Article  Google Scholar 

  • Troy, T. J., E. F. Wood, and J. Sheffield, 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44, W09411, doi: 10.1029/2007WR006513.

    Article  Google Scholar 

  • Ungersböck, M., F. Rubel, T. Fuchs, et al., 2001: Bias correction of global daily rain gauge measurements. Phys. Chem. Earth B: Hydrol., Oceans Atmos., 26, 411–414, doi: 10.1016/S14 64-1909(01)00027-2.

    Article  Google Scholar 

  • Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.

    Article  Google Scholar 

  • van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, et al., 2000: Offline Validation of the ERA-40 Surface Scheme. ECMWF Tech. Memo., 295, European Center for Medium-Range Weather Forecasts, Reading, UK, 43 pp.

    Google Scholar 

  • van Diepen, C. A., J. Wolf, H. van Keulen, et al., 1989: WOFOST: A simulation model of crop production. Soil Use Manag., 5, 16–24, doi: 10.1111/j.1475-2743.1989.tb00755.x.

    Article  Google Scholar 

  • Wagner, W., G. Blöschl, P. Pampaloni, et al., 2007: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res., 38, 1–20, doi: 10.2166/nh.2007.029.

    Article  Google Scholar 

  • Wan, Z. M., 2014: New refinements and validation of the collec-tion-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ., 40, 36–45, doi: 10.1016/j.rse.2013.08.027.

    Article  Google Scholar 

  • Wang, A. H., and X. B. Zeng, 2013: Development of global hourly 0.5° land surface air temperature datasets. J. Climate, 26, 7676–7691, doi: 10.1175/JCLI-D-12-00682.1.

    Article  Google Scholar 

  • Wang, S., B. C. Ancell, G. H. Huang, et al., 2018: Improving robustness of hydrologic ensemble predictions through probabilistic pre- and post-processing in sequential data assimilation. Water Resour. Res., 54, 2129–2151, doi: 10.1002/2018WR022546.

    Article  Google Scholar 

  • Wang, W., W. Cui, X. J. Wang, et al., 2016: Evaluation of GL-DAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. J. Hydrometeor., 17, 2815–2833, doi: 10.1175/JHM-D-15-0191.1.

    Article  Google Scholar 

  • Wei, H. L., Y. L. Xia, K. E. Mitchell, et al., 2013: Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Process., 27, 297–303, doi: 10.1002/hyp.9214.

    Article  Google Scholar 

  • Wei, S. G., Y. J. Dai, Q. Y. Duan, et al., 2014: A global soil data set for earth system modeling. J. Adv. Model. Earth Syst., 6, 249–263, doi: 10.1002/2013MS000293.

    Article  Google Scholar 

  • Wilson, K., A. Goldstein, E. Falge, et al., 2002: Energy balance closure at FLUXNET sites. Agric. Forest Meteor., 113, 223–243, doi: 10.1016/S0168-1923(02)00109-0.

    Article  Google Scholar 

  • Wood, E. F., J. K. Roundy, T. J. Try, et al., 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, doi: 10.1029/2010WR010090.

    Article  Google Scholar 

  • Xia, Y. L., A. J. Pitman, H. V. Gupta, et al., 2002: Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset. J. Hydrometeor., 3, 181–194, doi: 10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2.

    Article  Google Scholar 

  • Xia, Y. L., K. E. Mitchell, M. B. Ek, et al., 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos., 117, D03109, doi: 10.1029/2011JD016048.

    Google Scholar 

  • Xia, Y. L., K. E. Mitchell, M. B. Ek, et al., 2012b: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos., 117, D03110, doi: 10.1029/2011JD016051.

    Google Scholar 

  • Xia, Y. L., B. A. Cosgrove, M. B. Ek, et al., 2013a: Overview of the North American Land Data Assimilation System (NL-DAS). Land Surface Observation, Modeling and Data Assimilation, S. L. Liang, X. Li, and X. H. Xie, Eds., World Scientific, Hackensack NJ, 337–377.

    Chapter  Google Scholar 

  • Xia, Y. L., M. B. Ek, J. Sheffield, et al., 2013b: Validation of Noah-simulated soil temperature in the North American Land Data Assimilation System phase 2. J. Appl. Meteor. Climatol., 52, 455–471, doi: 10.1175/JAMC-D-12-033.1.

    Article  Google Scholar 

  • Xia, Y. L., M. B. Ek, D. Mocko, et al., 2014a: Uncertainties, correlations, and optimal blends of drought indices from the NL-DAS multiple land surface model ensemble. J. Hydrometeor., 15, 1636–1650, doi: 10.1175/JHM-D-13-058.1.

    Article  Google Scholar 

  • Xia, Y. L., M. B. Ek, C. D. Peters-Lidard, et al., 2014b: Application of USDM statistics in NLDAS-2: Optimal blended NL-DAS drought index over the continental United States. J. Geophys. Res. Atmos., 119, 2947–2965, doi: 10.1002/2013 JD020994.

    Article  Google Scholar 

  • Xia, Y. L., M. T. Hobbins, Q. Z. Mu, et al., 2015a: Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process., 29, 1757–1771, doi: 10.1002/hyp.10299.

    Article  Google Scholar 

  • Xia, Y. L., M. B. Ek, Y. H. Wu, et al., 2015b: Comparison of NL-DAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 1962–1980, doi: 10.1175/JHM-D-14-0096.1.

    Article  Google Scholar 

  • Xia, Y. L., D. M. Mocko, M. Huang, et al., 2017: Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. J. Hydrometeor., 18, 625–649, doi: 10.1175/JHM-D-16-0112.1.

    Article  Google Scholar 

  • Xia, Y. L., D. M. Mocko, S. G. Wang, et al., 2018: Comprehensive evaluation of the variable infiltration capacity (VIC) model in the North American Land Data Assimilation System. J. Hydrometeor., 17, 1853–1879, doi: 10.1175/JHM-D-18-0139.1.

    Article  Google Scholar 

  • Xiao, J. F., J. Q. Chen, K. J. Davis, et al., 2012: Advances in up-scaling of eddy covariance measurements of carbon and water fluxes. J. Geophys. Res. Biogeo., 117, G00J01, doi: 10.1029/2011JG001889.

    Article  Google Scholar 

  • Xie, Y., P. X. Wang, X. J. Bai, et al., 2017: Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agric. Forest Meteor., 246, 194–206, doi: 10.1016/j.agrformet.2017.06.015.

    Article  Google Scholar 

  • Xu, T. R., S. L. Liang, and S. M. Liu, 2011: Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter. J. Geophys. Res. Atmos., 116, D09109, doi: 10.1029/2010JD 015150.

    Google Scholar 

  • Xu, T. R., S. M. Liu, Z. W. Xu, et al., 2015: A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci., 58, 211–230, doi: 10.1007/s11430-014-4964-7.

    Article  Google Scholar 

  • Xu, T. R., Z. X. Guo, S. M. Liu, et al., 2018: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophysics. Res. Atmos., 123, 8674–8690, doi: 10.1029/2018JD028447.

    Article  Google Scholar 

  • Xu, T. R., X. L. He, S. M. Bateni, et al., 2019: Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sens. Environ., 221, 444–461, doi: 10.1016/j.rse.2018.11.023.

    Article  Google Scholar 

  • Yang, D. Q., B. E. Goodison, J. R. Metcalfe, et al., 1998: Accuracy of NWS 8” standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 54–68, doi: 10.1175/1520-0426(1998) 015<0054:AONSNP>2.0.CO;2.

    Article  Google Scholar 

  • Yang, D. Q., D. Kane, Z. P. Zhang, et al., 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, doi: 10.1029/2005GL024057.

    Google Scholar 

  • Yang, F., H. Lu, K. Yang, et al., 2017: Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci., 21, 5805–5821, doi: 10.5194/hess-21-5805-2017.

    Article  Google Scholar 

  • Yang, K., T. Watanabe, T. Koike, et al., 2007: Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan Ser. II, 85, 229–242.

    Article  Google Scholar 

  • Yang, K., T. Koike, I. Kaihotsu, et al., 2009: Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions. J. Hydrometeor., 10, 780–793, doi: 10.1175/2008JHM1065.1.

    Article  Google Scholar 

  • Yang, K., L. Zhu, Y. Y. Chen, et al., 2016: Land surface model calibration through microwave data assimilation for improving soil moisture simulations. J. Hydrol., 523, 266–276, doi: 10.1016/j.jhydrol.2015.12.018.

    Article  Google Scholar 

  • Yang, R. Q., K. Mitchell, J. Meng, et al., 2011: Summer-season forecast experiments with the NCEP Climate Forecast System using different land models and different initial land states. J. Climate, 24, 2319–2334, doi: 10.1175/2010JCLI 3797.1.

    Article  Google Scholar 

  • Yilmaz, M. T., W. T. Crow, M. C. Anderson, et al., 2012: An objective methodology for merging satellite- and model-based soil moisture products. Water Resour. Res., 48, W11502, doi: 10.1029/2011WR011682.

    Article  Google Scholar 

  • Yu, Y. Y., D. Tarpley, J. L. Privette, et al., 2009: Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans. Geosci. Remote Sens., 47, 936–951, doi: 10.1109/TGRS.2008.2006180.

    Article  Google Scholar 

  • Yuan, X., P. Ji, L. Y. Wang, et al., 2018: High-resolution land surface modeling of hydrological changes over the Sanjiangy-uan region in the eastern Tibetan Plateau: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 10, 2806–2828, doi: 10.1029/2018MS001412.

    Article  Google Scholar 

  • Zaitchik, B. F., M. Rodell, and F. Olivera, 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Re-sour. Res., 46, W06507, doi: 10.1029/2009WR007811.

    Google Scholar 

  • Zhang, K., J. S. Kimball, and S. W. Running, 2016: A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3, 834–853, doi: 10.1002/wat2.1168.

    Article  Google Scholar 

  • Zhang, T. P., P. W. Stackhouse, S. K. Gupta, et al., 2013: The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach. J. Quant. Spec-trosc. Radiat. Transfer, 122, 127–140, doi: 10.1016/j.jqsrt.2012.10.004.

    Article  Google Scholar 

  • Zhang, T. P., P. W. Stackhouse, J. S. Gupta, et al., 2015: The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements. J. Quant. Spectrosc. Radiat. Transfer, 150, 134–147, doi: 10.1016/j.jqsrt.2014.07.013.

    Article  Google Scholar 

  • Zheng, H., and Z. L. Yang, 2016: Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes. J. Geophys. Res. Atmos., 121, 14,387–14,402, doi: 10.1002/2016JD025187.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Eric Luebehusen of U.S. Department of Agriculture who helped us generate Fig. 5. We acknowledge Mary Hart for proofreading and editing our first draft, Holly Norton and Roshan Shrestha for the EMC internal review, and three anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengchao Hao.

Additional information

Supported by the US Environmental Modeling Center (EMC) Land Surface Modeling Project (granted to Youlong Xia) and National Natural Science Foundation of China (51609111, granted to Baoqing Zhang).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Hao, Z., Shi, C. et al. Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects. J Meteorol Res 33, 159–189 (2019). https://doi.org/10.1007/s13351-019-8172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8172-4

Key words

Navigation