Skip to main content
Log in

An overview of mineral dust modeling over East Asia

  • Review
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ai, N., and K. R. Polenske, 2008: Socioeconomic impact analysis of yellow-dust storms: An approach and case study for Beijing. Economic Systems Research, 20, 187–203, doi: 10.1080/09535310802075364.

    Article  Google Scholar 

  • Aoki, T., H. Motoyoshi, Y. Kodama, et al., 2006: Atmospheric aerosol deposition on snow surfaces and its effect on albedo. SOLA, 2, 13–16, doi: 10.2151/sola.2006-004.

    Article  Google Scholar 

  • Bi, J. R., J. P. Huang, Q. Fu, et al., 2011: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. J. Quant. Spectros. Radiative Transfer, 112, 346–360, doi: 10.1016/j.jqsrt.2010.09.006.

    Article  Google Scholar 

  • Bian, H., X. X. Tie, J. J. Cao, et al., 2011: Analysis of a severe dust storm event over China: Application of the WRF-dust model. Aerosol and Air Quality Research, 11, 419–428, doi: 10.4209/aaqr.2011.04.0053.

    Google Scholar 

  • Chao, W.-L., and M. Alexander, 1984: Mineral soils as carriers for Rhizobium inoculants. Appl. Environ. Microbio., 47, 94–97.

    Google Scholar 

  • Chen, S. Y., J. P. Huang, J. J. Liu, et al., 2010: Effects of dust aerosols on cloud in semi-arid regions as inferred from OMI and MODIS retrievals. Adv. Earth Sci., 25, 188–198. (in Chinese)

    Google Scholar 

  • Chen, S. Y., J. P. Huang, C. Zhao, et al., 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res, 118, 797–812, doi: 10.1002/jgrd.50122.

    Google Scholar 

  • Chen, S. Y., C. Zhao, Y. Qian, et al., 2014a: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research, 15, 15–30, doi: 10.1016/j. aeolia.2014.02.001.

    Article  Google Scholar 

  • Chen, S. Y., J. P. Huang, Y. Qian, et al., 2014b: Effects of aerosols on autumn precipitation over mid–eastern China. J. Trop. Meteor., 20, 242–250.

    Google Scholar 

  • Chen, S. Y., J. P. Huang, L. T. Kang, et al., 2016: Emission, transport and radiative effects of mineral dust from Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmos. Chem. Phys., doi: 10.5194/acp-2016-531.

    Google Scholar 

  • Chen, S. Y., J. P. Huang, J. Li, et al., 2017: Comparisons of dust emission, transport, and deposition between the Taklimakan desert and Gobi desert from 2007 to 2011. Sci. China Earth Sci, doi: 10.1007/s11430-016-9051-0.

    Google Scholar 

  • Conant, W. C., J. H. Seinfeld, J. Wang, et al., 2003: A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. J. Geophys. Res., 108, doi: 10.1029/2002 JD003260.

  • Cong, Z. Y., S. C. Kang, S. P. Gao, et al., 2013: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ. Sci. Technol., 47, 2579–2586, doi: 10.1021/es3048202.

    Article  Google Scholar 

  • Eguchi, K., I. Uno, K. Yumimoto, et al., 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 3137–3145, doi: 10.5194/acp-9-3137-2009.

    Article  Google Scholar 

  • Fairlie, T. D., D. J. Jacob, J. E. Dibb, et al., 2010: Impact of mineral dust on nitrate, sulfate, and ozone in trans-Pacific Asian pollution plumes. Atmos. Chem. Phys., 10, 3999–4012, doi: 10.5194/acp-10-3999-2010.

    Article  Google Scholar 

  • Flanner, M. G., C. S. Zender, J. T. Randerson, et al., 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi: 10.1029/2006 JD008003.

    Article  Google Scholar 

  • Flanner, M. G., X. Liu, C. Zhou, et al., 2012: Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys., 12, 4699–4721, doi: 10.5194/acp-12-4699-2012.

    Article  Google Scholar 

  • Fu, Q., T. J. Thorsen, J. Su, et al., 2009: Test of Mie-based singlescattering properties of non-spherical dust aerosols in radiative flux calculations. J. Quant. Spectros. Radiative Transfer, 110, 1640–1653, doi: 10.1016/j.jqsrt.2009.03.010.

    Article  Google Scholar 

  • Fu, X., S. X. Wang, Z. Cheng, et al., 2014: Source, transport, and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011. Atmos. Chem. Phys., 14, 1239–1254, doi: 10.5194/acp-14-1239-2014.

    Article  Google Scholar 

  • Ge, J. M., J. P. Huang, J. Su, et al., 2011: Shortwave radiative closure experiment and direct forcing of dust aerosol over northwestern China. Geophys. Res. Lett., 38, L24803, doi: 10.1029/2011GL049571.

    Article  Google Scholar 

  • Ginoux, P., M. Chin., I. Tegen, et al., 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20255–20274, doi: 10.1029/2000JD000 053.

    Article  Google Scholar 

  • Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2003a: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. 2: Model simulation and validation. J. Geophys. Res., 108, doi: 10.1029/2002JD002633.

  • Gong, S. L., L. A. Barrie, J. P. Blanchet, et al., 2003b: Canadian aerosol module: A size segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res., 108, AAC 3-1–AAC 3-16, doi: 10.1029/2001JD002002.

  • Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Climate, 19, 104–122, doi: 10.1175/JCLI3606.1.

    Article  Google Scholar 

  • Grell, G. A., S. E. Peckham, R. Schmitz, et al., 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975, doi: 10.1016/j.atmosenv.2005.04.027.

    Article  Google Scholar 

  • Grell, G., and A. Baklanov, 2011: Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ., 45, 6845–6851, doi: 10.1016/j.atmosenv. 2011.01.017.

    Article  Google Scholar 

  • Gu, Y., Y. Xue, F. D. Sales, et al., 2016: A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia. Climate Dyn., 46, 2353–2370, doi: 10.1007/s00382-015-2706-y.

    Article  Google Scholar 

  • Guo, J., and Y. Yin, 2015: Mineral dust impacts on regional precipitation and summer circulation in East Asia using a regional coupled climate system model. J. Geophys. Res., 120, 10378–10398, doi: 10.1002/2015JD023096.

    Google Scholar 

  • Han, Z. W., 2010: Direct radiative effect of aerosols over East Asia with a regional coupled climate/chemistry model. Meteor. Z., 19, 287–298, doi: 10.1127/0941-2948/2010/0461.

    Article  Google Scholar 

  • Han, Z. W., H. Ueda, K. Matsuda, et al., 2004: Model study on particle size segregation and deposition during Asian dust events in March 2002. J. Geophys. Res., 109, doi: 10.1029/2004JD004920.

  • Han, Z. W., J. W. Li, X. G. Xia, et al., 2012: Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate–chemistry–aerosol mode. Atmos. Environ., 54, 688–699, doi: 10.1016/j.atmosenv. 2012.01.041.

    Article  Google Scholar 

  • Han, Z. W., J. W. Li, W. D. Guo, et al., 2013: A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate–chemistry–aerosol model. Atmos. Environ., 68, 54–63, doi: 10.1016/j.atmosenv.2012.11. 032.

    Article  Google Scholar 

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi: 10.1029/96JD03436.

    Article  Google Scholar 

  • Hsu, S. C., F. Tsai, F.-J. Lin, et al., 2013: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res., 118, 7169–7181, doi: 10.1002/jgrd.50405.

    Article  Google Scholar 

  • Huang, J. P., B. Lin, P. Minnis, et al., 2006a: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, doi: 10.1029/2006GL026561.

  • Huang, J. P., Y. J. Wang, T. H. Wang, et al., 2006b: Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia. Progress in Natural Science, 16, 1084–1089, doi: 10.1080/10020070612330114.

    Article  Google Scholar 

  • Huang, J. P., P. Minnis, B. Lin, et al., 2006c: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.

    Google Scholar 

  • Huang, J. P., P. Minnis, Y. H. Yi, et al., 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, doi: 10.1029/2007GL029938.

  • Huang, J. P., Z. W. Huang, J. R. Bi, et al., 2008a: Micro-pulse Lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Ocean. Sci. Lett., 1, 8–11.

    Google Scholar 

  • Huang, J. P., P. Minnis, B. Chen, et al., 2008b: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • Huang, J., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu–Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021, doi: 10.5194/acp-9-4011-2009.

    Article  Google Scholar 

  • Huang, J., P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from ATrain satellite measurements. Atmos. Chem. Phys,. 10, 6863–6872, doi: 10.5194/acp-10-6863-2010.

    Article  Google Scholar 

  • Huang, J. P., Q. Fu, W. Zhang, et al., 2011: Dust and black carbon in seasonal snow across northern China. Bull. Amer. Meteor. Soc., 92, 175–181, doi: 10.1175/2010BAMS3064.1.

    Article  Google Scholar 

  • Huang, J., X. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys., 12, 5391–5398, doi: 10.5194/acpd-12-4627-2012.

    Article  Google Scholar 

  • Huang, X. X., T. J. Wang, F. Jiang, et al., 2013: Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China. Aerosol and Air Quality Research, 13, 179–193, doi: 10.4209/aaqr.2012.05.0108.

    Google Scholar 

  • Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over East Asian arid and semi-arid regions. J. Geophys. Res., 119, 11398–11416, doi: 10.1002/2014JD021796.

    Google Scholar 

  • Huang, J. P., J. J. Liu, B. Chen, et al., 2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11653–11655, doi: 10.5194/acp-15-11653- 2015.

    Article  Google Scholar 

  • Huang, J. P., H. P. Yu, X. D. Guan, et al., 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166–171, doi: 10.1038/NCLIMATE2837.

    Google Scholar 

  • Huneeus, N., M. Schulz, Y. Balkanski, et al., 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 7781–7816, doi: 10.5194/acp-11-7781-2011.

    Article  Google Scholar 

  • In, H.-J., and S.-U. Park, 2003: The soil particle size dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea in April 2002. Atmos. Environ,. 37, 4625–4636, doi: 10.1016/j.atmosenv.2003.07.009.

    Article  Google Scholar 

  • Jia, X., W. C. Wang, Y. H. Chen, et al., 2010: Influence of dust aerosols on cloud radiative forcing over northern China. China Environ. Sci, 30, 1009–1014. (in Chinese)

    Google Scholar 

  • Jia, R., Y. Z. Liu, B. Chen, et al., 2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210–219, doi: 10.1016/j.atmosenv.2015.10.038.

    Article  Google Scholar 

  • Joussaume, S, 1990: Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J. Geophys. Res., 95, 1909–1941, doi: 10.1029/JD095iD02p01909.

    Article  Google Scholar 

  • Kameda, E., A. Fukushima, et al., 2016: Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Scientific Report, 6, 24427, doi: 10.1038/srep 24427.

    Article  Google Scholar 

  • Kang, J.-H., T.-C. Liu, J. Keller, et al., 2013: Asian dust storm events are associated with an acute increase in stroke hospitalisation. Journal of Epidemiology and Community Health, 67, 125–131, doi: 10.1136/jech-2011-200794.

    Article  Google Scholar 

  • Kang, L., J. P. Huang, S. Y. Chen, et al., 2016: Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmos. Environ., 125, 188–198, doi: 10.1016/j.atmosenv.2015.10.085.

    Article  Google Scholar 

  • Kim, J., S.-C. Yoon, S.-W. Kim, et al., 2006: Chemical apportionment of shortwave direct aerosol radiative forcing at the Gosan super-site, Korea during ACE-Asia. Atmos. Environ., 40, 6718–6729, doi: 10.1016/j.atmosenv.2006.06.007.

    Article  Google Scholar 

  • Kim, N. K., Y. P.. Kim, and C.-H. Kang, 2011: Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5 data between 1992 and 2008. Atmos. Environ., 45, 6107–6115, doi: 10.1016/j.atmosenv. 2011.08.051.

    Article  Google Scholar 

  • Klose, M., and Y. P. Shao, 2012: Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys., 12, 7309–7320, doi: 10.5194/acp-12-7309-2012.

    Article  Google Scholar 

  • Klose, M., and Y. P. Shao, 2013: Large-eddy simulation of turbulent dust emission. Aeolian Research, 8, 49–58, doi: 10.1016/j.aerolia.2012.10.010.

    Article  Google Scholar 

  • Klose, M., Y. P. Shao, X. L. Li, et al., 2014: Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., 119, 10441–10457, doi: 10.1002/2014JD021688.

    Google Scholar 

  • Kok, J. F., 2011: Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos. Chem. Phys., 11, 10149–10156, doi: 10.5194/acp-11-10149-2011.

    Google Scholar 

  • Kuchiki, K., T. Aoki, M. Niwano, et al., 2015: Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: Variations during the 2007–2013 winters at Sapporo, Japan. J. Geophys. Res., 120, 868–882, doi: 10.1002/2014JA020661.

    Article  Google Scholar 

  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864, doi: 10.1007/s00382-006-0114-z.

    Article  Google Scholar 

  • Lau, K.-M., S. C. Tsay, C. Hsu, et al., 2008: The joint aerosol–monsoon experiment: A new challenge for monsoon climate research. Bull. Amer. Meteor. Soc., 89, 369–389, doi: 10.1175/BAMS-89-3-369.

    Article  Google Scholar 

  • Lau, K. M., M. K. Kim, K.-M. Kim, et al., 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, doi: 10.1088/1748-9326/5/2/025204.

  • Li, J. W., Z.W. Han, and R. J. Zhang, 2011: Model study of atmospheric particulates during dust storm period in March 2010 over East Asia. Atmos. Environ., 45, 3954–3964, doi: 10.1016/j.atmosenv.2011.04.068.

    Article  Google Scholar 

  • Li, J., Z. Wang, G. Zhuang, et al., 2012: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-dust in March 2010. Atmos. Chem. Phys., 12, 7591–7607, doi: 10.5194/acp-12-7591-2012.

    Article  Google Scholar 

  • Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res., 103, 31637–31645, doi: 10.1029/1998JD200036.

    Article  Google Scholar 

  • Liao, H., Y. Zhang, W.-T. Chen, et al., 2009: Effect of chemistry–aerosol–climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols. J. Geophys. Res., 114, D10306, doi: 10.1029/2008JD010984.

    Article  Google Scholar 

  • Liu, M., D. L. Westphal, S. G. Wang, et al., 2003: A high-resolution numerical study of the Asian dust storms of April 2001. J. Geophys. Res., 108, 8653, doi: 10.1029/2002JD003178.

    Article  Google Scholar 

  • Liu, Z. Y., D. Liu, J. P. Huang, et al., 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060, doi: 10.5194/acp-8-5045-2008.

    Article  Google Scholar 

  • Liu, Y., D. X. Yang, W. Z. Chen, et al., 2010: Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. J. Geophys. Res., 115, doi: 10.1029/2009JD012684.

  • Liu, Y., J. Huang, G. Shi, et al., 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11455–11463, doi: 10.5194/acp-11-11455-2011.

    Article  Google Scholar 

  • Liu, Y. Z., G. Y. Shi, and Y. K. Xie, 2013: Impact of dust aerosol on glacial–interglacial climate. Adv. Atmos. Sci., 30, 1725–1731, doi: 10.1007/s00376-013-2289-7.

    Article  Google Scholar 

  • Liu, Y. Z., R. Jia, T. Dai, et al., 2014: A review of aerosol optical properties and radiative effects. J. Meteor. Res., 28, 1003–1028, doi: 10.1007/s13351-014-4045-z.

    Article  Google Scholar 

  • Liu, Y., Y. Sato, R. Jia, et al., 2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos. Chem. Phys., 15, 12581–12594, doi: 10.5194/acp-15-12581-2015.

    Article  Google Scholar 

  • Lu, H., and Y. P. Shao, 1999: A new model for dust emission by saltation bombardment. J. Geophys. Res., 104, 16827–16842, doi: 10.1029/1999JD900169.

    Article  Google Scholar 

  • Ma, J. H., H. Zhang, Y. F. Zheng, et al., 2007: The optical depth global distribution of dust aerosol and its possible reason analysis. Climatic Environ. Res., 12, 156–164. (in Chinese)

    Google Scholar 

  • Mahowald, N., K. Kohfeld, M. Hansson, et al., 1999: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res., 104, 15895–15916, doi: 10.1029/1999JD900084.

    Article  Google Scholar 

  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16415–16430, doi: 10.1029/95JD00690.

    Article  Google Scholar 

  • Marticorena, B., G. Bergametti, B. Aumont, et al., 1997: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res., 102, 4387–4404, doi: 10.1029/96JD 02964.

    Article  Google Scholar 

  • Mikami, M., G. Y. Shi, I. Uno, et al., 2006: Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Global and Planetary Change, 52, 142–172, doi: 10.1016/j.gloplacha.2006.03.001.

    Article  Google Scholar 

  • Ming, J., H. Cachier, C. Xiao, et al., 2008: Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8, 1343–1352, doi: 10.5194/acp-8-1343-2008.

    Article  Google Scholar 

  • Painter, T. H., A. P. Barrett, C. C. Landry, et al., 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, doi: 10.1029/2007GL030284.

    Article  Google Scholar 

  • Park, S.-U., and J. I. Jeong, 2008: Direct radiative forcing due to aerosols in Asia during March 2002. Sci. Total Environ., 407, 394–404, doi: 10.1016/j.scitotenv.2008.07.041.

    Article  Google Scholar 

  • Perlwitz, J., I. Tegen, and R. L. Miller, 2001: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res., 106, 18167–18192, doi: 10.1029/2000JD900668.

    Article  Google Scholar 

  • Qian, Y., C. B. Fu, and S. Y. Wang, 1999: Mineral dust and climate change. Adv. Earth Sci., 14, 391–394. (in Chinese)

    Google Scholar 

  • Qian, Y., W. I. Gustafson Jr, L. R. Leung, et al., 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, D03108, doi: 10.1029/2008JD 011039.

    Article  Google Scholar 

  • Qian, Y., T. J. Yasunari, S. Doherty, et al., 2015: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci., 32, 64–91, doi: 10.1007/s00376-014-0010-0.

    Article  Google Scholar 

  • Qu, B., J. Ming, S.-C. Kang, et al., 2014: The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys., 14, 11117–11128, doi: 10.5194/acpd-14-13109-2014.

    Article  Google Scholar 

  • Shao, Y. P., 2001: A model for mineral dust emission. J. Geophys. Res., 106, 20239–20254, doi: 10.1029/2001JD900171.

    Article  Google Scholar 

  • Shao, Y. P., 2004: Simplification of a dust emission scheme and comparison with data. J. Geophys. Res., 109, D10202, doi: 10.1029/2003JD004372.

    Article  Google Scholar 

  • Shao, Y. P., 2008: Physics and Modeling of Wind Erosion. 2nd ed. Springer, Netherlands, 452 pp.

    Google Scholar 

  • Shao, Y. P., M. Raupach, and J. F. Leys, 1996: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Australian Journal of Soil Research, 34, 309–342, doi: 10.1071/SR9960309.

    Article  Google Scholar 

  • Shao, Y. P., Y. Yan, J. J. Wang, et al., 2003: Northeast Asian dust storms: Real-time numerical prediction and validation. J. Geophys. Res., 108, 4691, doi: 10.1029/2003JD003667.

    Article  Google Scholar 

  • Shao, Y., and C. H. Dong, 2006: A review on East Asian dust storm climate, modeling and monitoring. Global and Planetary Change, 52, 1–22, doi: 10.1016/j.gloplacha.2006.02.011.

    Article  Google Scholar 

  • Shao, Y. P., K.-H. Wyrwoll, A. Chappell, et al., 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2, 181–204, doi: 10.1016/j.aeolia.2011.02.001.

    Article  Google Scholar 

  • Shi, G. Y., 1984: Effect of atmospheric overlapping bands and their treatment on the calculation of thermal radiation. Adv. Atmos. Sci., 1, 246–255, doi: 10.1007/BF02678137.

    Article  Google Scholar 

  • Shi, J.-H., H.-W. Gao, J. Zhang, et al., 2012: Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China. J. Geophys. Res., 117, D17304, doi: 10.1029/2012jd017983.

    Google Scholar 

  • Sokolik, I., and G. Golitsyn, 1993: Investigation of optical and radiative properties of atmospheric dust aerosols. Atmos. Environ. Part A. General Topics, 27, 2509–2517, doi: 10.1016/0960-1686(93)90023-R.

    Article  Google Scholar 

  • Sokolik, I., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683, doi: 10.1038/381681a0.

    Article  Google Scholar 

  • Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771, doi: 10.5194/acp-8-2763-2008.

    Article  Google Scholar 

  • Sun, J. M., M. Y. Zhang, and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res., 106, 10325–10333, doi: 10.1029/2000JD900665.

    Article  Google Scholar 

  • Sun, H., Z. T. Pan, and X. D. Liu, 2012: Numerical simulation of spatial–temporal distribution of dust aerosol and its direct radiative effects on East Asian climate. J. Geophys. Res., 117, D13206, doi: 10.1029/2011JD017219.

    Article  Google Scholar 

  • Takemura, T., T. Nakajima, A. Higurashi, et al., 2003: Aerosol distributions and radiative forcing over the Asian Pacific region simulated by spectral radiation–transport model for aerosol species (SPRINTARS). J. Geophys. Res., 108, 8659, doi: 10.1029/2002JD003210.

    Article  Google Scholar 

  • Tanaka, T. Y., and M. Chiba, 2005: Global simulation of dust aerosol with a chemical transport model, MASINGAR. J. Meteor. Soc. Japan, 83A, 255–278, doi: 10.2151/jmsj.83A.255.

    Article  Google Scholar 

  • Tegen, I., and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res., 99, 22897–22914, doi: 10.1029/94JD01928.

    Article  Google Scholar 

  • Tegen, I., A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422, doi: 10.1038/380419a0.

    Article  Google Scholar 

  • Todd, M. C., D. B. Karam, C. Cavazos, et al., 2008: Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad. J. Geophys. Res., 113, D24107, doi: 10.1029/2008JD010476.

    Article  Google Scholar 

  • Toon, O. B., C. McKay, T. P. Ackerman, et al., 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–16301, doi: 10.1029/JD094iD13p16287.

    Article  Google Scholar 

  • Uno, I., G. R. Carmichael, D. G. Streets, et al., 2003: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J. Geophys. Res., 108, 8668, doi: 10.1029/2002JD002845.

    Article  Google Scholar 

  • Uno, I., Z. Wang, M. Chiba, et al., 2006: Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res., 111, D12213, doi: 10.1029/2005JD006575.

    Article  Google Scholar 

  • Uno, I., K. Yumimoto, A. Shimizu, et al., 2008: 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model. Geophys. Res. Lett., 35, L06803, doi: 10.1029/2007GL032329.

    Article  Google Scholar 

  • Uno, I., K. Eguchi, K. Yumimoto, et al., 2009: Asian dust transported one full circuit around the globe. Nature Geoscience, 2, 557–560, doi: 10.1038/NGEO583.

    Article  Google Scholar 

  • Uno, I., K. Eguchi, K. Yumimoto, et al., 2011: Large Asian dust layers continuously reached North America in April 2010. Atmos. Chem. Phys., 11, 7333–7341, doi: 10.5194/acp-11-7333-2011.

    Article  Google Scholar 

  • Wang, T. H., and Q. L. Min, 2008: Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements. J. Geophys. Res., 113, D19203, doi: 10.1029/2008JD 009958.

    Article  Google Scholar 

  • Wang, T. H., and J. P. Huang, 2009: A method for estimating optical properties of dusty cloud. Chinese Optics Letters, 7, 368–372, doi: 10.3788/COL20090705.0368.

    Article  Google Scholar 

  • Wang, Z. F., H. Ueda, and M. Y. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res., 105, 26947–26959, doi: 10.1029/2000JD900370.

    Article  Google Scholar 

  • Wang, H., G. Y. Shi, A. Teruo, et al., 2004: Radiative forcing due to dust aerosol over East Asia–North Pacific region during spring 2001. Chinese Sci. Bull., 49, 2212–2219, doi: 10.1007/BF03185790.

    Article  Google Scholar 

  • Wang, X. H., T. J. Wang, J. P. Tang, et al., 2005: Thermal diffusion characteristics of atmosphere-particle two phase flow in dust storm. Heat Mass Transfer, 41, 306–314, doi: 10.1007/s00231-004-0533-5.

    Article  Google Scholar 

  • Wang, X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asia dust events and their long-term trend. Atmos. Environ., 42, 3156–3165, doi: 10.1016/j.atmosenv.2007.07.046.

    Article  Google Scholar 

  • Wang, H., S. L. Gong, H. L. Zhang, et al., 2010: A new-generation sand and dust storm forecasting system GRAPES_CUA CE/Dust: Model development, verification and numerical simulation. Chinese Sci. Bull., 55, 635–649, doi: 10.1007/s11434-009-0481-z.

    Article  Google Scholar 

  • Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res,. 115, D00H35, doi: 10.1029/2010JD014109.

    Google Scholar 

  • Wang, X., J. P. Huang, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J. Geophys. Res,. 115, D00K27, doi: 10.1029/2009JD013467.

    Google Scholar 

  • Wang, Z. L., H. Zhang, X. S. Shen, et al., 2010: Modeling study of aerosol indirect effects on global climate with an AGCM. Adv. Atmos. Sci., 27, 1064–1077, doi: 10.1007/s00376-010- 9120-5.

    Article  Google Scholar 

  • Wang, J., X. G. Xu, D. K., Henze, et al., 2012: Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. Geophys. Res. Lett, 39, doi: 10.1029/2012GL051136.

  • Wang, S. H., N. C. Hsu, S. C. Tsay, et al., 2012: Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea. Geophys. Res. Lett,. 39, L05811, doi: 10.1029/2011GL050415.

    Google Scholar 

  • Wang, X., S. J. Doherty, and J. P. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res,. 118, 1471–1492, doi: 10.1029/2012JD018291.

    Article  Google Scholar 

  • Wang, Z. L., H. Zhang, X. W. Jing, et al., 2013: Effect of nonspherical dust aerosol on its direct radiative forcing. Atmos. Res., 120–121, 112–126, doi: 10.1016/j.atmosres.2012.08.006.

    Article  Google Scholar 

  • Wang, Y., X. Liu, C. Hoose, et al., 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmos. Chem. Phys., 14, 10411–10430, doi: 10.5194/acp-14-10411-2014.

    Article  Google Scholar 

  • Wang, H., G. Y. Shi, B. Wang, et al., 2017: The impacts of dust aerosol from deserts of China on the radiative heating rate over desert sources and the North Pacific region. Chinese J. Atmos. Sci, 31, 515–526. (in Chinese)

    Google Scholar 

  • Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci,. 37, 2734–2745, doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    Article  Google Scholar 

  • Wei, X. D., and H. Zhang, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Optica Sinica, 31, 501002, doi: 10.3788/AOS201131.0501002. (in Chinese)

    Article  Google Scholar 

  • Westphal, D. L., O. B. Toon, and T. N. Carlson, 1988: A case study of mobilization and transport of Saharan dust. J. Atmos. Sci., 45, 2145–2175, doi: 10.1175/1520-0469(1988)045 <2145:ACSOMA>2.0.CO;2.

    Article  Google Scholar 

  • Woodward, S., 2001: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106, 18155–18166, doi: 10.1029/2000JD900795.

    Article  Google Scholar 

  • Wu, J., W. M. Jiang, W. G. Wang, et al., 2004: Simulation of distribution and radiative effects of dust aerosol in spring over China area. J. Univ. Sci. Tech., 34, 116–125. (in Chinese)

    Google Scholar 

  • Wu, J., C. B. Fu, Z. W. Han, et al., 2010: Simulation of the direct effects of dust aerosol on climate in East Asia. Particuology, 8, 301–307, doi: 10.1016/j.partic.2010.01.006.

    Article  Google Scholar 

  • Wu, L. T., H. Su, and J. H. Jiang, 2013: Regional simulation of aerosol impacts on precipitation during the East Asian summer monsoon. J. Geophys. Res., 118, 6454–6467, doi: 10.1002/jgrd.50527.

    Google Scholar 

  • Xia, X. G., P. C. Wang, Y. S. Wang, et al., 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, doi: 10.1029/2008GL034981.

  • Xu, B. Q., J. J. Cao, J. Hansen, et al., 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA, 106, 22114–22118, doi: 10.1073/pnas.0910444106.

    Article  Google Scholar 

  • Xu, B. Q., J. J. Cao, D. R. Joswiak, et al., 2012: Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environ. Res. Lett., 7, 014022, doi: 10.1088/1748-9326/7/1/014022.

    Article  Google Scholar 

  • Yan, H., Y. Qian, G. Lin, et al., 2014: Parametric sensitivity and calibration for the Kain–Fritsch convective parameterization scheme in the WRF model. Climate Res., 59, 135–147, doi: 10.3354/Cr01213.

    Article  Google Scholar 

  • Yang, B., Y. Qian, G. Lin, et al., 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys., 12, 2409–2427, doi: 10.5194/acp-12-2409-2012.

    Article  Google Scholar 

  • Yang, B., Y. Qian, G. Lin, et al., 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang–McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res., 118, 395–415, doi: 10.1029/2012jd018213.

    Google Scholar 

  • Yang, B., Y. C. Zhang, Y. Qian, et al., 2015a: Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation. Climate Dyn., 44, 1661–1684, doi: 10.1007/s00382- 014-2118-4.

    Article  Google Scholar 

  • Yang, B., Y. C. Zhang, Y. Qian, et al., 2015b: Parametric sensitivity analysis for the Asian summer monsoon precipitation simulation in the Beijing Climate Center AGCM, version 2.1. J. Climate, 28, 5622–5644, doi: 10.1175/JCLI-D-14-00655.1.

    Article  Google Scholar 

  • Yumimoto, K., I. Uno, N. Sugimoto, et al., 2008: Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos. Chem. Phys., 8, 2869–2884, doi: 10.5194/acp-8-2869-2008.

    Article  Google Scholar 

  • Yumimoto, K., K. Eguchi, I. Uno, et al., 2009: An elevated largescale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos. Chem. Phys., 9, 8545–8558, doi: 10.5194/acp-9-8545-2009.

    Article  Google Scholar 

  • Yumimoto, K., K. Eguchi, I. Uno, et al., 2010: Summertime transPacific transport of Asian dust. Geophys. Res. Lett,. 37, L18815, doi: 10.1029/2010GL043995.

    Article  Google Scholar 

  • Yin, Y., S. Wurzler, Z. Levin, et al., 2002: Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, AAC 19-1–AAC 19-14, doi: 10.1029/2001JD001544.

  • Yin, Y., and L. Chen, 2007: The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys., 7, 3497–3505, doi: 10.5194/acp-7-3497- 2007.

    Article  Google Scholar 

  • Zender, C. S., and E. Y. Kwon, 2005: Regional contrasts in dust emission responses to climate. J. Geophys. Res., 110, D13201, doi: 10.1029/2004JD005501.

    Article  Google Scholar 

  • Zender, C. S., H. S. Bian, and D. Newman, 2003: Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, doi: 10.1029/2002JD002775.

  • Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102, 28041–28047, doi: 10.1029/97JD02300.

    Article  Google Scholar 

  • Zhang, X. Y., S. L. Gong, T. L. Zhao, et al., 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi: 10.1029/2003GL018206.

    Google Scholar 

  • Zhang, H., Z. L. Wang, P. W. Guo, et al., 2009a: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26, 57–66, doi: 10.1007/s00376-009-0057-5.

    Article  Google Scholar 

  • Zhang, H., J. H. Ma, and Y. F. Zheng, 2009b: A modeling study of global radiative forcing due to dust aerosol. Acta Meteor. Sinica, 69, 510–521. (in Chinese)

    Google Scholar 

  • Zhang, L., X. Cao, J. Bao, et al., 2010: A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys., 10, 4283–4293, doi: 10.5194/acp-10-4283-2010.

    Article  Google Scholar 

  • Zhang, H., J. H. Ma, and Y. F. Zheng, 2010: Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor. Sinica, 24, 558–570.

    Google Scholar 

  • Zhang, H., Z. L. Wang, Z. Z. Wang, et al., 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-Aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.

    Article  Google Scholar 

  • Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2003: Modeled sizesegregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J. Geophys. Res., 108, 8665, doi: 10.1029/2002JD 003363.

    Article  Google Scholar 

  • Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. J. Climate., 19, 88–103, doi: 10.1175/JCLI3605.1.

    Google Scholar 

  • Zhao, W., H. N. Liu, and J. Wu, 2008: Radiative and climate effects of dust aerosol in springs over China. J. Nanjing Univ. (Natural Sci.), 44, 598–607. (in Chinese)

    Google Scholar 

  • Zhao, C., X. Liu, L. R. Leung, et al., 2010: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos. Chem. Phys., 10, 8821–8838, doi: 10.5194/acp-10-8821-2010.

    Article  Google Scholar 

  • Zhao, C., X. Liu, L. R. Leung, et al., 2011: Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos. Chem. Phys., 11, 1879–1893, doi: 10.5194/acp-11-1879-2011.

    Article  Google Scholar 

  • Zhao, C., S. Chen, L. R. Leung, et al., 2013a: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys., 13, 10733–10753, doi: 10.5194/acp-13-10733-2013.

    Article  Google Scholar 

  • Zhao, C., X. Liu, Y. Qian, et al., 2013b: A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the community atmosphere model CAM5. Atmos. Chem. Phys., 13, 10969–10987, doi: 10.5194/acp-13-10969-2013.

    Article  Google Scholar 

  • Zhao, C., Z. Hu, Y. Qian, et al., 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11475–11491, doi: 10.5194/acp-14-11475-2014.

    Article  Google Scholar 

  • Zhao, S. Y., X. F. Zhi, H. Zhang, et al., 2014: Primary assessment of the simulated climatic state using a coupled aerosol–climate model BCC_AGCM2.0.1_CAM. Climatic Environ. Res., 19, 265–277, doi: 10.3878/j.issn.1006-9585.2012.12015. (in Chinese)

    Google Scholar 

  • Zhao, S. Y., H. Zhang, S. Feng, et al., 2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol–climate coupled system. Int. J. Climatol., 35, 1858–1866, doi: 10.1002/joc.4093.

    Article  Google Scholar 

  • Zhou, C. H., S. L. Gong, X. Y. Zhang, et al., 2008: Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/dust. Atmos. Chem. Phys., 8, 787–798, doi: 10.5194/acp-8-787-2008.

    Article  Google Scholar 

  • Zou, L. W., Y. Qian, T. J. Zhou, et al., 2014: Parameter tuning and calibration of RegCM3 with MIT–Emanuel cumulus parameterization scheme over CORDEX East Asia domain. J. Climate, 27, 7687–7701, doi: 10.1175/Jcli-D-14-00229.1.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the comments by Professor Hua Zhang and the two anonymous reviewers, which have helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Huang.

Additional information

Supported by the National Natural Science Foundation of China (41405003 and 41521004). Authors Yun Qian and Chun Zhao were supported by the Office of Science, U.S. Department of Energy (DOE), as part of its Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for the DOE by the Battelle Memorial Institute under contract DE-AC05- 76RL01830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, J., Qian, Y. et al. An overview of mineral dust modeling over East Asia. J Meteorol Res 31, 633–653 (2017). https://doi.org/10.1007/s13351-017-6142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6142-2

Key words

Navigation