Skip to main content
Log in

Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures. As such, the radio-frequency interference (RFI) signals emanating from man-made microwave radiation transmitters can result in large errors in land retrievals. RFI in C- and X-band channels can contaminate remotely sensed measurements, as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E) and the WindSat sensor. In this work, applications of an RFI detection and correction algorithm in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the one-dimensional variational retrieval (1-DVAR) method are described. The results indicate that the values of retrieved parameters, such as land skin temperature (LST), over these areas contaminated by RFI are much higher than those from the global data assimilation system (GDAS) products. The results also indicate that the differences between new retrievals and GDAS products are decreased evidently through taking into account the RFI correction algorithm. In addition, the convergence metric (χ2) of 1-DVAR is found to be a new method for identifying regions where land retrievals are affected by RFI. For example, in those regions with much stronger RFI, such as Europe and Japan, χ 2 of 1-DVAR is so large that convergence cannot be reached and retrieval results may not be reliable or cannot be obtained. Furthermore, χ 2 also decreases with the RFI-corrected algorithm for those regions with moderate or weak RFI. The results of RFI detected by χ 2 are almost consistent with those identified by the spectral difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, I. S, M. H. Bettenhausen, P. W. Gaiser, et al., 2010: Identiflcation of ocean-reflected radiofrequency interference using WindSat retrieval chisquare probability. IEEE Geosci. Remote Sens. Lett., 7, 406–410.

    Article  Google Scholar 

  • Anterrieu, E., 2011: On the detection and quantification of RFI in L1a signals provided by SMOS. IEEE Trans. Geosci. Remote Sens., 49, 3986–3992.

    Article  Google Scholar 

  • Boukabara, S. A., and F. Weng, 2008: Microwave emissivity over ocean in all-weather conditions: Validation using WindSat and airborne GPS-dropsondes. IEEE Trans. Geosci. Remote Sens., 46, 376–384

    Article  Google Scholar 

  • —, K. Garrett, W. Chen, et al., 2011: MiRS: An allweather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 3249–3272.

    Article  Google Scholar 

  • Camps, A. A., J. Gourrion, J. M. Tarongi, et al., 2010: RIF Ranalysis in SMOS imagery. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, HI, IEEE, 2007–2010, doi: 10.1109/IGARSS.2010.5654268.

    Chapter  Google Scholar 

  • Castro, R., A. Gutiérrez, and J. Barbosa, 2012: A first set of techniques to detect radio frequency interferences and mitigate their impact on SMOS data. IEEE Trans. Geosci. Remote Sens., 50, 1440–1447.

    Article  Google Scholar 

  • Ding, S., P. Yang, F. Weng, et al., 2011: Validation of the community radiative transfer model. J. Quant. Spectrosc. & Radiative Transfer., 112, 1050–1064.

    Article  Google Scholar 

  • Ellingson, S. W., and J. T. Johnson, 2006: A polarimetric survey of radio-frequency interference in Cand X-bands in the continental United States using WindSat radiometry. IEEE Trans. Geosci. Remote Sens., 44, 540–548.

    Article  Google Scholar 

  • Eyre, J. R., G. A. Kelly, A. P. NcNally, et al., 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor. Soc., 119, 1427–1463.

    Article  Google Scholar 

  • Gasiewski, A. J., M. Klein, A. Yevgrafov, et al., 2002: Interference mitigation in passive microwave radiometry. IEEE International Geoscience and Remote Sensing Symposium. Toronto, Canada, IEEE, 1682–1684.

    Chapter  Google Scholar 

  • Hallikainen, M., J. Kainulainen, J. Seppanen, et al., 2010: Studies of radio frequency interference at L-band using an airborne 2-D interferometric radiometer. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, HI, IEEE, 2490–2491, doi: 10.1109/IGARSS.2010.5651866.

    Chapter  Google Scholar 

  • Han, Y., van P. Delst, Q. Liu, et al., 2006: Community Radiative Transfer Model (CRTM): Version 1, NOAA Technical Report NESDIS 122. NOAA, Washington, DC, 33 pp.

    Google Scholar 

  • Japan Aerospace Exploration Agency (JAXA) Press, 2012: Launch Result of the Global Changing Observation Mission 1st-Water “SHIZUKU” (GCOM-W1) and the Korean Multi-Purpose Satellite 3 (KOMPSAT-3) by H-IIA Launch Vehicle No. 21. Available online at: http://www.jaxa.jp/press/2012/05/20120518_h2af21_e.html, 2012.

    Google Scholar 

  • Johnson, J. T., A. J. Gasiewski, B. Guner, et al., 2006: Airborne radio-frequency interference studies at Cband using a digital receiver. IEEE Trans. Geosci. Remote. Sens., 44, 1974–1985.

    Article  Google Scholar 

  • Kachi, M., K. Imaoka, H. Fujii, et al., 2008: Status of GCOM-W1/AMSR2 development and science activities Sensors, Systems, and Next-Generation Satellites XII. Proceedings of the SPIE, 7106, 71060P–71060P-8, Meynart, R., S. P. Neeck, H. Shimoda, et al., doi: 10.1117/12.801228.

    Article  Google Scholar 

  • Kidd, C., 2006: Radio frequency interference at passive microwaves observation frequencies. Int. J. Remote Sens., 27, 3853–3865.

    Article  Google Scholar 

  • Lacava, T., I. Coviello, M. Faruolo, et al., 2013: A multitemporal investigation of AMSR-E Cband radio-frequency interference. IEEE Trans. Geosci. Remote Sens., 51, 2007–2015, doi: 10.1109/TGRS.2012.2228487.

    Article  Google Scholar 

  • Le Vine, D. M., G. S. E. Lagerloef, F. R. Colomb, et al., 2007: Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens., 45, 2040–2050.

    Article  Google Scholar 

  • Li, L., E. G. Njoku, E. Im, et al., 2004: A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380–390.

    Article  Google Scholar 

  • —, P. W. Gaiser, M. H. Bettenhausen, et al., 2006: WindSat radio-frequency interference signature and its identification over land and ocean. IEEE Trans. Geosci. Remote Sens., 44, 530–539.

    Article  Google Scholar 

  • Mecklenburg, S., M. Drusch, Y. H. Kerr, et al., 2012: ESA’s soil moisture and ocean salinity mission: Mission performance and operations. IEEE Trans. Geosci. Remote Sens., 50, 1354–1366.

    Article  Google Scholar 

  • Misra, S., and C. S. Ruf, 2008: Detection of radiofrequency interference with the aquarius radiometer. IEEE Trans. Geosci. Remote Sens., 46, 3123–3128.

    Article  Google Scholar 

  • —, and —, 2012: Analysis of radio frequency interference detection algorithms in the angular domain for SMOS. IEEE Trans. Geosci. Remote Sens., 50, 1448–1457.

    Article  Google Scholar 

  • Njoku, E. G., P. Ashcroft, T. K. Chan, et al., 2005: Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens., 43, 938–947.

    Article  Google Scholar 

  • Oliva, R., E. Daganzo-Eusebio, Y. H. Kerr, et al., 2012: SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens., 50, 1427–1439.

    Article  Google Scholar 

  • Piepmeier, J. R., P. N. Mohammed, and J. J. Knuble, 2008: A double detector for RFI mitigation in microwave radiometers. IEEE Trans. Geosci. Remote Sens., 46, 458–465.

    Article  Google Scholar 

  • Ruf, C., S. M. Gross, and S. Misra, 2006: RFI detection and mitigation for microwave radiometry with an agile digital detector. IEEE Trans. Geosci. Remote Sens., 44, 694–706.

    Article  Google Scholar 

  • Skou, N., S. Misra, J. E. Balling, et al., 2010: L-band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Trans. Geosci. Remote Sens., 48, 1398–1407.

    Article  Google Scholar 

  • Weng, F., B. Yan, and N. C. Grody, 2001: A microwave land emissivity model. J. Geophys. Res., 106, 20115–20123.

    Article  Google Scholar 

  • Wu Ying and Weng Fuzhong, 2011: Detection and correction of AMSR-E radio-frequency interference. Acta Meteor. Sinica, 25, 669–681.

    Article  Google Scholar 

  • Yan, B., and F. Weng, 2011: Effects of microwave desert surface emissivity on AMSU-A data assimilation. IEEE Trans Geosci. Remote Sens., 49, 1263–1276.

    Article  Google Scholar 

  • Yang, H., and F. Weng, 2011: Error sources in remote sensing of microwave land surface emissivity. IEEE Trans. Geosci. Remote Sens., 49, 3437–3442.

    Article  Google Scholar 

  • Zheng, W., J. Meng, H. Wei, et al., 2009: Improvement of satellite data utilization in NCEP operational NWP modeling and data assimilation systems. Proc. 2nd Workshop Remote Sens. Model. Surf. Properties, Toulouse, France, June 9–11, 14 pp.

    Google Scholar 

  • Zou, X., J. Zhao, F. Weng, et al., 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 40, 4994–5003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu  (吴 莹).

Additional information

Supported by the National Natural Science Foundation of China (41305033, 41275043, and 41175035), Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institution, and NOAA/NESDIS/Center for Satellite Applications and Research (STAR) CalVal Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Weng, F. Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land. J Meteorol Res 28, 645–655 (2014). https://doi.org/10.1007/s13351-014-3075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3075-x

Key words

Navigation