Skip to main content
Log in

An overview of BCC climate system model development and application for climate change studies

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC_CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC_CSM1.1 with coarse resolution (approximately 2.8125°×2.8125°) and BCC_CSM1.1(m) with moderate resolution (approximately 1.125°×1.125°). Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC_CSM model have been contributed to the Coupled Model Intercomparison Project phase five (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.

Simulations of the 20th century climate using BCC_CSM1.1 and BCC_CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed. Both BCC_CSM1.1 and BCC_CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses indicate that the higher resolution in BCC_CSM1.1(m) improves the simulation of mean climate relative to BCC_CSM1.1, particularly on regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Annan, J. D., and J. C. Hargreaves, 2011: Understanding the CMIP3 multimodel ensemble. J. Climate, 24, 4529–4538.

    Article  Google Scholar 

  • Arora, V. K., and G. J. Boer, 2005: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biol., 11, 39–59, doi: 10.1111/j.1365-2486.2004.00890.x.

    Article  Google Scholar 

  • —, —, P. Friedlingstein, et al., 2013: Carbonconcentration and carbon-climate feedbacks in CMIP5 earth system models. J. Climate, 26, 5289–5314, doi: 10.1175/JCLI-D-12-00494.1.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, et al., 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.

    Article  Google Scholar 

  • Chen Haishan, Shi En, and Zhou Jing, 2011: Evaluation of recent 50 years extreme climate events over China simulated by Beijing Climate Center (BCC) climate model. Trans. Atmos. Sci., 34(5), 513–528. (in Chinese)

    Google Scholar 

  • Chen Haoming, Yu Rucong, Li Jian, et al., 2012: The coherent interdecadal changes of East Asian climate in mid summer simulated by BCC_AGCM 2.0.1. Climate Dyn., 39, 155–163, doi: 10.1007/s00382-011-1154-6.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR/TN-464+STR, 214 pp.

    Google Scholar 

  • Ding Yinghui, Liu Yiming, Song Yongjia, et al., 2002: Research and experiments of the dynamical model system for short-term climate prediction. Climatic Environ. Res., 7(2), 236–246. (in Chinese)

    Google Scholar 

  • —, Li Qingquan, Li Weijing, et al., 2004: Advance in seasonal dynamical prediction operation in China. Acta Meteor. Sinica, 62(5), 598–612. (in Chinese)

    Google Scholar 

  • —, Ren Guoyu, Shi Guangyu, et al., 2006: National assessment report of climate change. Part I: Climate change in China and its future trend. Adv. Climate Change Res., 2(1), 3–8. (in Chinese)

    Google Scholar 

  • Dong Min, 2001: Introduction to National Climate Center Atmospheric General Circulation Model-Basic Principles and Applications. China Meteorological Press, Beijing, 152 pp. (in Chinese)

    Google Scholar 

  • —, Wu Tongwen, Wang Zaizhi, et al., 2009: Simulations of the tropical intraseasonal oscillation by the atmospheric general circulation model of the Beijing Climate Center. Acta Meteor. Sinica, 67(6), 912–922.

    Google Scholar 

  • —, —, —, et al., 2012: A simulation study on the extreme temperature events of the 20th century by using the BCC_AGCM. Acta Meteor. Sinica, 26(4), 489–506, doi: 10.1007/s13351-012-0408-5.

    Article  Google Scholar 

  • —, —, —, et al., 2013: Simulation of the precipitation and its variation during the 20th century using the BCC climate model (BCC_CSM_1.0). J. Appl. Meteor. Sci., 24, 1–11. (in Chinese)

    Google Scholar 

  • Editorial Committee of National Assessment Report of Climate Change, 2011: Second National Assessment Report of Climate Change. Science Press, Beijing, 710 pp.

    Google Scholar 

  • Gao Feng, Xin Xiaoge, and Wu Tongwen, 2012: A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model. Chinese J. Atmos. Sci., 36(6), 1165–1179, doi: 10.3878/j.issn.1006-9895.2012.11243. (in Chinese)

    Google Scholar 

  • Gong, S. L., L. A. Barrie, and M. Lazare, 2002: Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets. J. Geophys. Res., 107(D24), AAC 13-1–AAC 13-14, doi: 10.1029/2001JD002004.

    Google Scholar 

  • —, —, J. P. Blanchet, et al., 2003: Canadian aerosol module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res., 108, AAC 3-1–AAC 3-16, doi: 10.1029/2001JD002002.

    Google Scholar 

  • Griffies, S. M., A. Gnanadesikan, K. W. Dixon, et al., 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 45–79.

    Article  Google Scholar 

  • Guiot, J., C. Corona, ESCARSEL members, 2010: Growing season temperatures in Europe and climate forcings over the past 1400 years. PLOS ONE, 5(4), e9972. doi: 10.1371/journal.pone.0009972.

    Article  Google Scholar 

  • Guo Zhun, Wu Chunqiang, Zhou Tianjun, et al., 2011: A comparison of cloud radiative forcings simulated by LASG/IAP and BCC atmospheric general circulation models. Chinese J. Atmos. Sci., 35(4), 739–752. (in Chinese)

    Google Scholar 

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99, 5551–5568.

    Article  Google Scholar 

  • Jansen, E., J. Overpeck, K. R. Briffa, et al., 2007: Palaeoclimate. Climate Change 2007: The Physical Science Basis. Solomon, S., D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Ji Jinjun, 1995: A climate-vegetation interaction model: simulating physical and biological processes at the surface. J. Biogeography, 22, 445–451.

    Article  Google Scholar 

  • —, Huang Mei, and Li Kerang, 2008: Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China (Ser. D), 51(6), 885–898.

    Article  Google Scholar 

  • Jiang, J. H., Su Hui, Zhai Chengxing, et al., 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, doi: 10.1029/2011JD017237.

  • Jie Weihua and Wu Tongwen, 2010: Hindcast for the 1998 summer heavy precipitation in the Yangtze and Huaihe River valley using BCC_AGCM2.0.1 model. Chinese J. Atmos. Sci., 34(5), 962–978. (in Chinese)

    Google Scholar 

  • —, —, Wang Jun, et al., 2013: Improvement of 6–15 day precipitation forecasts using a time-lagged ensemble method. Adv. Atmos. Sci., 30, doi: 10.1007/s00376-013-3037-8.

    Google Scholar 

  • Jing Xianwen and Zhang Hua, 2012: Application and evaluation of McICA cloud-radiation framework in the AGCM of the National Climate Center. Chinese J. Atmos. Sci., 36(5), 945–958, doi: 10.3878/j.jssn.1006-9895. (in Chinese)

    Google Scholar 

  • Li Weijing, Zhang Peiqun, Li Qingquan, et al., 2005: Research and operational application of dynamical climate model prediction system. J. Appl. Meteor. Sci., 16(Suppl.), 1–11. (in Chinese)

    Google Scholar 

  • Li Weiping, Liu Xin, Nie Suping, et al., 2009: Comparative studies of snow cover parameterization schemes used in climate models. Adv. Earth Sci., 24(5), 512–522. (in Chinese)

    Google Scholar 

  • Lu Chunhui, Ding Yihui, and Zhang Li, 2014: A study on numerical simulation of characteristics of stratospheric circulation changes with BCC_AGCM2.1 model. Acta Meteor. Sinica, doi: 10.11676/qxxb2014.006.

    Google Scholar 

  • Luo Yong, Zhao Zongci, Xu Ying, et al., 2005: Projections of climate chang over China for the 21st century. Acta Meteor. Sinica, 19(4), 400–406. (in Chinese)

    Google Scholar 

  • Moberg, A., D. M. Sonechkin, K. Holmgren, et al., 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433(7026), 613–617.

    Article  Google Scholar 

  • Myhre, G., B. H. Samset, M. Schulz, et al., 2012: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 12, 22355–22413.

    Article  Google Scholar 

  • Oleson, K. W., Y. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM), NCAR/TN-461+STR, NCAR, Boulder, Colorado, USA.

    Google Scholar 

  • Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al., 2004: Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett., 31, L11303, doi: 10.1029/2004GL019824.

    Article  Google Scholar 

  • Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 1587–1614.

    Article  Google Scholar 

  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 27–37.

    Google Scholar 

  • Shen Zhen, Zhang Yaocun, Xiao Hui, et al., 2011: Ability of the model BCC_AGCM2.0.1 to reproduce Meiyu precipitation. Meteor. Mon., 37(11), 1336–1342. (in Chinese)

    Google Scholar 

  • Shi Guangyu and Zhang Hua, 2007: The relationship between absorption coefficient and temperature and their effect on the atmospheric cooling rate. J. Quant. Spectrosc. Ra., 105, 459–466.

    Article  Google Scholar 

  • Song Zhenya, Qiao Fangli, Lei Xiaoyan, et al., 2007: The establishment of an atmosphere-wave-ocean circulation coupled numerical model and its application in the North Pacific SST simulation. J. Hydrodyn., 22, 543–548.

    Google Scholar 

  • Su Hui, J. H. Jiang, Zhai Chengxing, et al., 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res., 118, 2762–2780, doi: 10.1029/2012JD018575.

    Article  Google Scholar 

  • Sun Ying and Ding Yihui, 2008: An assessment on the performance of IPCC AR4 climate models in simulating interdecadal variations of the East Asian summer monsoon. Acta Meteor. Sinica, 22, 472–488. (in Chinese)

    Google Scholar 

  • Tang Guoli and Ren Guoyu, 2005: Reanalysis of surface air temperature change of the last 100 years over China. Climatic Environ. Res., 10, 791–798.

    Google Scholar 

  • Trenberth, K. E., P. D. Jones, P. Ambenje, et al., 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Solomon, S., D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Uppala, S. M., et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.

    Article  Google Scholar 

  • Wang Lu, Zhou Tianjun, Wu Tongwen, et al., 2009: Simulation of the leading mode of Asian Australian monsoon interannual variability with the Beijing Climate Center atmospheric general circulation model. Acta Meteor. Sinica, 67(6), 973–982. (in Chinese)

    Google Scholar 

  • Wei Xiaodong and Zhang Hua, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Optica Sinica, 31(5), 0501002.

    Article  Google Scholar 

  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Ocean Technol., 17, 525–531.

    Article  Google Scholar 

  • Wu Tongwen, 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725–744, doi: 10.1007/s00382-011-0995-3.

    Article  Google Scholar 

  • — and Wu Guoxiong, 2004: An empirical formula to compute snow cover fraction in GCMs. Adv. Atmos. Sci., 21, 529–535, doi: 10.1007/BF02915720.

    Article  Google Scholar 

  • —, Yu Rucong, and Zhang Fang, 2008: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci., 65, 2235–2253.

    Article  Google Scholar 

  • —, —, —, et al., 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147, doi: 10.1007/s00382-008-0487-2.

    Article  Google Scholar 

  • —, Li Weiping, Ji Jinjun, et al., 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res: Atmos., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Google Scholar 

  • Xia Kun, Luo Yong, and Li Weiping, 2011: Simulation of freezing and melting of soil on the Northeast Tibetan Plateau. Chinese Sci. Bull., 56(20), 2145–2155.

    Article  Google Scholar 

  • Xiao Chuliang and Zhang Yaocun, 2012: The East Asian upper-tropospheric jet streams and associated transient eddy activities simulated by a climate system model BCC_CSM1.1. Acta Meteor. Sinica, 26(6), 700–716.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Xin Xiaoge, Wu Tongwen, and Zhang Jie, 2012: Introduction of CMIP5 experiments carried out by BCC climate system model. Adv. Climate Change Res., 8, 378–382. (in Chinese)

    Google Scholar 

  • —, Cheng Yanjie, Wang Fang, et al., 2013a: Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models. Adv. Atmos. Sci., 30, 796–805, doi: 10.1007/s00376-012-2151-3.

    Article  Google Scholar 

  • —, Wu Tongwen, Li Jianglong, et al., 2013b: How well does BCC_CSM1.1 reproduce the 20th century climate change over China? Atmos. Oceanic Sci. Lett., 6, 21–26.

    Google Scholar 

  • —, —, and Zhang Jie, 2013c: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change Res., 4(1), 41–49.

    Article  Google Scholar 

  • —, Zhang Li, Zhang Jie, et al., 2013d: Climate change projections over East Asia with BCC_CSM1.1 under RCP scenarios. J. Meteor. Soc. Japan, 91, 413–429.

    Article  Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean, 33, 407–446.

    Article  Google Scholar 

  • Zhang Hua, T. Nakajima, and Shi Guangyu, et al., 2003: An optimal approach to overlapping bands with correlated k-distribution method and its application to radiative calculations. J. Geophys. Res., 108, 4641–4654, doi: 10.1029/2002JD003358.

    Article  Google Scholar 

  • —, Shi Guangyu, T. Nakajima, et al., 2006a: The effects of the choice of the k-interval number on radiative calculations. J. Quant. Spectrosc. Ra., 98(1), 31–43.

    Article  Google Scholar 

  • —, T. Suzuki, T. Nakajima, et al., 2006b: Effects of band division on radiative calculations. Opt. Eng., 45(1), 016002, doi: 10.1117/1.2160521.

    Article  Google Scholar 

  • —, Wang Zhili, Wang Zaizhi, et al., 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.

    Article  Google Scholar 

  • Zhang, L., M. Dong, and T. Wu, 2011: Changes in precipitation extremes over eastern China simulated by the Beijing Climate Center Climate System Model (BCC_CSM1.0). Climate Res., 50, 227–245.

    Article  Google Scholar 

  • —, Wu Tongwen, Xin Xiaoge, et al., 2012: Projections of annual mean air temperature and precipitation over the globe and in China during the 21st century by the BCC Climate System Model BCC_CSM1.0. Acta Meteor. Sinica, 26(3), 362–375.

    Article  Google Scholar 

  • —, Wu Tongwen, Xin Xiaoge, et al., 2013: The annual modes of tropical precipitation simulated by Beijing Climate Center climate system model (BCC_CSM). Chinese J. Atmos. Sci., 37(5), 994–1012. (in Chinese)

    Google Scholar 

  • Zhang Minhua, Lin Wuyin, C. S. Bretherton, et al., 2003: A modified formulation of fractional stratiform condensation rate in the NCAR community atmospheric model (CAM2). J. Geophys. Res., 108(D1), ACL 10-1–ACL 10-11, doi: 10.1029/2002JD002523.

    Google Scholar 

  • Zhang Peiqun, Li Qingquan, Wang Lanning, et al., 2004: Development and application of dynamic climate model prediction system in China. Sci. Technol. Rev., 7, 17–21.

    Google Scholar 

  • Zhao Shuyun, Zhi Xiefei, Zhang Hua, et al., 2013: A primary assessment of the simulated climatic state by a coupled aerosol-climate model BCC_AGCM2.0.1_CAM. Climatic Environ. Res., doi: 10.3878/j.issn.1006-9585.2012.12015.

    Google Scholar 

  • Zhao Zongci, Wang Shaowu, Xu Ying, et al., 2005: Attribution of the 20th century climate warming in China. Climatic Environ. Res., 10(4), 808–817. (in Chinese)

    Google Scholar 

  • Zhou Tianjun and Yu Rucong, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.

    Article  Google Scholar 

  • Zhou Wenyan, Luo Yong, and Li Yunmei, 2010: Validation of the radiative transfer parameterization scheme in land surface process model. Acta Meteor. Sinica, 68(1), 12–18. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwen Wu  (吴统文).

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2010CB951902) and China Meteorological Administration Special Public Welfare Research Fund (GYHY201306020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Song, L., Li, W. et al. An overview of BCC climate system model development and application for climate change studies. Acta Meteorol Sin 28, 34–56 (2014). https://doi.org/10.1007/s13351-014-3041-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3041-7

Key words

Navigation