Skip to main content
Log in

Monitoring building climate and timber moisture gradient in large-span timber structures

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

The evaluation of damages in large-span timber structures indicates that the predominantly observed damage pattern is pronounced cracking in the lamellas of glued-laminated timber elements. A significant proportion of these cracks is attributed to the seasonal and use-related variations of the internal climate within large buildings and the associated inhomogeneous shrinkage and swelling processes in the timber elements. To evaluate the significance of these phenomena, long-term measurements of climatic conditions and timber moisture content were taken within large-span timber structures in buildings of typical construction type and use. These measurements were then used to draw conclusions on the magnitude and time necessary for adjustment of the moisture distribution to changing climatic conditions. A comparison of the results for different types of building use confirms the expected large range of possible climatic conditions in buildings with timber structures. Ranges of equilibrium moisture content representative of the type and use of building were obtained. These ranges can be used in design to condition the timber to the right value of moisture content, in this way reducing the crack formation due to moisture variations. The results of this research also support the development of suitable monitoring systems which could be applied in the form of early warning systems on the basis of climate measurements. Based on the results obtained, proposals for the practical implementation of the results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Blaß HJ, Frese M, Schadensanalyse von Hallentragwerken aus Holz (2010) Band 16 der Reihe Karlsruher Berichte zum Ingenieurholzbau. KIT Scientific Publishing, Karlsruhe

  2. Frühwald E, Serrano E, Toratti T, Emilsson A, Thelandersson S (2007) Design of safe timber structures—how can we learn from structural failures in concrete, steel and timber? Report TVBK-3053. Div. of Struct. Eng, Lund University, Lund

    Google Scholar 

  3. Dietsch P, Winter S (2009) Assessment of the structural reliability of all wide span timber structures under the responsibility of the city of Munich. Proceedings 33rd IABSE symposium. Bangkok, Thailand, pp 9–11

    Google Scholar 

  4. Dietsch P (2012) Einsatz und Berechnung von Schubverstärkungen für Brettschichtholzbauteile. Dissertation, Technische Universität München

  5. EN 1995-1-1:2004 (2004) Eurocode 5: design of timber structures—part 1-1: general—common rules and rules for buildings. European Committee for Standardization CEN, Brussels, Belgium

  6. Blaß HJ, Ehlbeck J, Kreuzinger H, Steck G (2004) Erläuterungen zu DIN 1052:2004–08. Bruderverlag, Karlsruhe

  7. Meierhofer U, Sell J (1979) Physikalische Vorgänge in wetterbeanspruchten Holzbauteilen—2. und 3. Mitteilung, Holz als Roh- und Werkstoff, 37 (6 + 12), pp 227–234 and 447–454

  8. Krabbe E, Neuhaus H (1989) Über Konstruktion. Klima und Holzfeuchtigkeit eines Hallenbades, Bauen mit Holz 91(4):214–217

    Google Scholar 

  9. Koponen S (2002) Puurakenteiden kosteudenhallinta rakentamisessa. TKK-TRT report 1-0502, Helsinki

  10. Evans F, Kleppe O, Dyken T (2007) Monitoring of timber bridges in Norway—results. Report Norsk Treteknisk Institutt, Oslo

    Google Scholar 

  11. Feldmeier F (2007) Ergebnisse und Schlussfolgerungen aus den Felduntersuchung einer Eissporthalle, Tagungsband Ingenieurholzbau—Karlsruher Tage, pp 98–104

  12. Brischke C, Rapp AO (2007) Untersuchung des langfristigen Holzfeuchteverlaufs an ausgewählten Bauteilen der Fußgängerbrücke in Essing. Arbeitsbericht der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg

    Google Scholar 

  13. Marquardt H, Mainka G-W (2008) Tauwasserausfall in Eissporthallen. Bauphysik 30(2):91–101

    Article  Google Scholar 

  14. Niemz P, Gereke T (2009) Auswirkungen kurz- und langzeitiger Luftfeuchteschwankungen auf die Holzfeuchte und die Eigenschaften von Holz. Bauphysik 31(6):380–385

    Article  Google Scholar 

  15. Fragiacomo M, Fortino S, Tononi D, Usardi I, Toratti T (2011) Moisture-induced stresses perpendicular to grain in cross-sections of timber members exposed to different climates. Eng Struct 33(11):3071–3078

    Article  Google Scholar 

  16. Fortino S, Genoese A, Genoese A, Nunes L, Palma P (2013) Numerical modelling of the hygro-thermal response of timber bridges during their service life: a monitoring case-study. Construct Build Mater 47:1225–1234

  17. Klaiber V (2003) Dimensionsstabilität von Fichtenholz unter dem Einfluss verschiedener Varianten der Rundholzbereitstellung und Schnittholztrocknung—Untersucht an Beispiel eines Fichtenreinbestandes in Mittelgebirgslage. Dissertation, Albert-Ludwigs-Universität, Freiburg im Breisgau

  18. EN 14080 (2013) Timber structures—glued laminated timber and glued solid timber—requirements. CEN, Brussels

  19. Gamper A, Dietsch P, Merk M, Winter S (2012) Building climate—long-term measurements to determine the effect on the moisture gradient in timber structures. Final report, Lehrstuhl für Holzbau und Baukonstruktion, Technische Universität München

  20. Ressel JB (2006) Fundamentals of wood moisture content measurement. Course notes, COST E53 Training School “Methods for measuring of moisture content and assessment of timber quality”, BFH, Hamburg, October 17–19

  21. Dietsch P, Franke S, Franke B, Gamper A (2014) Measurement of moisture content in timber structures—methods (this issue)

  22. Euler L (1755) Institutiones Calculi differentialis, Berlin

  23. Kollmann F, Coté WA (1968) Principles of wood science and technology I: solid wood. Springer, Berlin

  24. Fortuin G (2003) Anwendung mathematischer Modelle zur Beschreibung der technischen Konvektionstrocknung von Schnittholz. Dissertation, Universität Hamburg

  25. Keylwerth R, Noack D (1956) Über den Einfluß höherer Temperaturen auf die elektrische Holzfeuch- tigkeitsmessung nach dem Widerstandsprinzip. Holz als Roh- und Werkstoff 14(5):162–172

    Article  Google Scholar 

  26. Hailwood AJ, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. In: Transactions of the Faraday Society, vol 42b, pp 84–92

  27. Simpson WT (1973) 1973. Predicting equilibrium moisture content of wood by mathematical models, wood and fiber science 5(1):41–48

    Google Scholar 

Download references

Acknowledgments

The research project was kindly supported by the following partners from industry: Scanntronik Mugrauer, DE-Zorneding; Studiengemeinschaft Holzleimbau e.V., DE-Wuppertal, bauart Konstruktions GmbH+Co. KG, DE-Lauterbach, Konstruktionsgruppe Bauen AG, DE-Kempten. Special gratitude is extended to the Research Initiative “Future Building” for funding the project with financial means of the Federal Office for Building and Regional Planning. In addition, the authors wish to acknowledge the help of students Michael Kraus, Manuel Waidelich, Stephanie Riedler und Astrid Indefrey during the reading and charting of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Dietsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietsch, P., Gamper, A., Merk, M. et al. Monitoring building climate and timber moisture gradient in large-span timber structures. J Civil Struct Health Monit 5, 153–165 (2015). https://doi.org/10.1007/s13349-014-0083-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-014-0083-6

Keywords

Navigation