Skip to main content
Log in

Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745–59. https://doi.org/10.1016/S0140-6736(19)30417-9.

    Article  CAS  PubMed  Google Scholar 

  2. Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage. 2022;30(2):196–206. https://doi.org/10.1016/j.joca.2021.10.003.

    Article  CAS  PubMed  Google Scholar 

  3. Losina E, Weinstein AM, Reichmann WM, Burbine SA, Solomon DH, Daigle ME, Rome BN, Chen SP, Hunter DJ, Suter LG, Jordan JM, Katz JN. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken). 2013;65(5):703–11. https://doi.org/10.1002/acr.21898.

    Article  PubMed  Google Scholar 

  4. Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293–311. https://doi.org/10.1016/j.mcna.2019.10.007.

    Article  PubMed  Google Scholar 

  5. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, Callahan L, Copenhaver C, Dodge C, Felson D, Gellar K, Harvey WF, Hawker G, Herzig E, Kwoh CK, Nelson AE, Samuels J, Scanzello C, White D, Wise B, Altman RD, DiRenzo D, Fontanarosa J, Giradi G, Ishimori M, Misra D, Shah AA, Shmagel AK, Thoma LM, Turgunbaev M, Turner AS, Reston J. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2020;72(2):149–62. https://doi.org/10.1002/acr.24131.

    Article  PubMed  Google Scholar 

  6. Visser AW, de Mutsert R, le Cessie S, den Heijer M, Rosendaal FR, Kloppenburg M. NEO Study Group. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann Rheum Dis. 2015;74,10:1842–47. https://doi.org/10.1136/annrheumdis-2013-205012.

  7. Nguyen LT, Sharma AR, Chakraborty C, Saibaba B, Ahn ME, Lee SS. Review of prospects of biological fluid biomarkers in osteoarthritis. Int J Mol Sci. 2017;18(3):601. https://doi.org/10.3390/ijms18030601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Z, Liu Q, Lv Z, Li J, Xu X, Sun H, Wang M, Sun K, Shi T, Liu Z, Tan G, Yan W, Wu R, Yang YX, Ikegawa S, Jiang Q, Sun Y, Shi D. Targeting macrophagic SHP2 for ameliorating osteoarthritis via TLR signaling. Acta Pharm Sin B. 2022;12(7):3073–84. https://doi.org/10.1016/j.apsb.2022.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Lange-Brokaar BJ, Ioan-Facsinay A, Yusuf E, Visser AW, Kroon HM, Andersen SN, Herb-van Toorn L, van Osch GJ, Zuurmond AM, Stojanovic-Susulic V, Bloem JL, Nelissen RG, Huizinga TW, Kloppenburg M. Degree of synovitis on MRI by comprehensive whole knee semi-quantitative scoring method correlates with histologic and macroscopic features of synovial tissue inflammation in knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(10):1606–13. https://doi.org/10.1016/j.joca.2013.12.013.

    Article  PubMed  Google Scholar 

  10. Nanus DE, Badoume A, Wijesinghe SN, Halsey AM, Hurley P, Ahmed Z, Botchu R, Davis ET, Lindsay MA, Jones SW. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine. 2021;72:103618. https://doi.org/10.1016/j.ebiom.2021.103618.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pountos I, Giannoudis PV. Modulation of cartilage’s response to injury: can chondrocyte apoptosis be reversed? Injury. 2017;48(12):2657–69. https://doi.org/10.1016/j.injury.2017.11.032.

    Article  PubMed  Google Scholar 

  12. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020;129:110452. https://doi.org/10.1016/j.biopha.2020.110452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576–91. https://doi.org/10.1016/j.bbadis.2016.01.003.

    Article  CAS  PubMed  Google Scholar 

  14. Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med. 2019;132:73–82. https://doi.org/10.1016/j.freeradbiomed.2018.08.038.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Wang L, Kang Y, Wu J, Zhang Z. Nanomaterial-based reactive oxygen species scavengers for osteoarthritis therapy. Acta Biomater. 2023;162:1–19. https://doi.org/10.1016/j.actbio.2023.03.030.

    Article  CAS  PubMed  Google Scholar 

  16. So TH, Chan SK, Lee VH, Chen BZ, Kong FM, Lao LX. Chinese medicine in cancer treatment - how is it practised in the east and the west? Clin Oncol (R Coll Radiol). 2019;31(8):578–88. https://doi.org/10.1016/j.clon.2019.05.016.

    Article  PubMed  Google Scholar 

  17. Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev. 2020;154–155:245–73. https://doi.org/10.1016/j.addr.2020.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal medicine for slowing aging and aging-associated conditions: efficacy, mechanisms and safety. Curr Vasc Pharmacol. 2020;18(4):369–93. https://doi.org/10.2174/1570161117666190715121939.

    Article  CAS  PubMed  Google Scholar 

  19. Enioutina EY, Salis ER, Job KM, Gubarev MI, Krepkova LV, Sherwin CM. Herbal medicines: challenges in the modern world. Part 5. status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev Clin Pharmacol. 2017;10(3):327–38. https://doi.org/10.1080/17512433.2017.1268917.

  20. Gezici S, Şekeroğlu N. Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anticancer Agents Med Chem. 2019;19(1):101–11. https://doi.org/10.2174/1871520619666181224121004.

    Article  CAS  PubMed  Google Scholar 

  21. Hu Q, Yu T, Li J, Yu Q, Zhu L, Gu Y. End-to-end syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine. Comput Methods Programs Biomed. 2019;174:9–15. https://doi.org/10.1016/j.cmpb.2018.10.011.

    Article  PubMed  Google Scholar 

  22. Li B, Chen K, Qian N, Huang P, Hu F, Ding T, Xu X, Zhou Q, Chen B, Deng L, Ye T, Guo L. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med. 2021;25(11):5283–94. https://doi.org/10.1111/jcmm.16538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zu Y, Mu Y, Li Q, Zhang ST, Yan HJ. Icariin alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. J Orthop Surg Res. 2019;14(1):307. https://doi.org/10.1186/s13018-019-1307-6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Feng K, Chen Z, Pengcheng L, Zhang S, Wang X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol. 2019;234(10):18192–205. https://doi.org/10.1002/jcp.28452.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Li Z, Wang W, Zhang H, Chen J, Su P, Liu L, Li W. Naringin protects against cartilage destruction in osteoarthritis through repression of NF-κB signaling pathway. Inflammation. 2016;39(1):385–92. https://doi.org/10.1007/s10753-015-0260-8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, He Y, Zhang Y, Wan H, Wan H, Yang J. Inhibition of oxidative stress: an important molecular mechanism of Chinese herbal medicine (Astragalus membranaceus, Carthamus tinctorius L., Radix Salvia Miltiorrhizae, etc.) in the Treatment of ischemic stroke by regulating the antioxidant system. Oxid Med Cell Longev. 2022;2022:1425369. https://doi.org/10.1155/2022/1425369.

  27. Liang Y, Xu Y, Zhu Y, Ye H, Wang Q, Xu G. Efficacy and safety of Chinese herbal medicine for knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2022;100:154029. https://doi.org/10.1016/j.phymed.2022.154029.

    Article  CAS  PubMed  Google Scholar 

  28. Pan Z, He Q, Zeng J, Li S, Li M, Chen B, Yang J, Xiao J, Zeng C, Luo H, Wang H. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress. Phytomedicine. 2022;105:154330. https://doi.org/10.1016/j.phymed.2022.154330.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Hou M, Pan Z, Tian X, Zhao Z, Liu T, Yang H, Shi Q, Chen X, Zhang Y, He F, Zhu X. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J Nanobiotechnology. 2022;20(1):303. https://doi.org/10.1186/s12951-022-01505-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mater Chem B. 2022;10(16):2973–94. https://doi.org/10.1039/d2tb00225f.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–76. https://doi.org/10.1016/j.cis.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:e4. https://doi.org/10.1017/erm.2018.3.

    Article  CAS  PubMed  Google Scholar 

  33. Ratanavaraporn J, Soontornvipart K, Shuangshoti S, Shuangshoti S, Damrongsakkul S. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model. Inflammopharmacology. 2017;25(2):211–21. https://doi.org/10.1007/s10787-017-0318-3.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Z, Gong F, Zhang P, Wang X, Zhang R, Xia W, Gao X, Zhou X, Cheng L. Natural product curcumin-based coordination nanoparticles for treating osteoarthritis via targeting Nrf2 and blocking NLRP3 inflammasome. Nano Res. 2022;15:3338–45. https://doi.org/10.1007/s12274-021-3864-3.

    Article  CAS  Google Scholar 

  35. Zhou P, Chen C, Yue X, Zhang J, Huang C, Zhao S, Wu A, Li X, Qu Y, Zhang C. Strategy for osteoarthritis therapy: improved the delivery of triptolide using liposome-loaded dissolving microneedle arrays. Int J Pharm. 2021;609:121211. https://doi.org/10.1016/j.ijpharm.2021.121211.

    Article  CAS  PubMed  Google Scholar 

  36. Jin J, Liu Y, Jiang C, Shen Y, Chu G, Liu C, Jiang L, Huang G, Qin Y, Zhang Y, Zhang C, Wang Y. Arbutin-modified microspheres prevent osteoarthritis progression by mobilizing local anti-inflammatory and antioxidant responses. Mater Today Bio. 2022;16:100370. https://doi.org/10.1016/j.mtbio.2022.100370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27(4):339–44. https://doi.org/10.1007/s00296-006-0247-8.

    Article  CAS  PubMed  Google Scholar 

  38. Bai Y, Gong X, Dou C, Cao Z, Dong S. Redox control of chondrocyte differentiation and chondrogenesis. Free Radic Biol Med. 2019;132:83–9. https://doi.org/10.1016/j.freeradbiomed.2018.10.443.

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, Hu X, Cheng J, Zhang X, Zhao F, Shi W, Ren B, Yu H, Yang P, Li Z, Liu Q, Liu Z, Duan X, Fu X, Zhang J, Wang J, Ao Y. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun. 2019;10(1):1914. https://doi.org/10.1038/s41467-019-09839-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burtenshaw D, Hakimjavadi R, Redmond EM, Cahill PA. Nox, Reactive oxygen species and regulation of vascular cell fate. Antioxidants (Basel). 2017;6(4):90. https://doi.org/10.3390/antiox6040090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther. 2013;140(3):239–57.

    Article  CAS  PubMed  Google Scholar 

  42. Ebrahimi S, Alalikhan A, Aghaee-Bakhtiari SH, Hashemy SI. The redox modulatory effects of SP/NK1R system: implications for oxidative stress-associated disorders. Life Sci. 2022;296:120448. https://doi.org/10.1016/j.lfs.2022.120448.

    Article  CAS  PubMed  Google Scholar 

  43. Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress-complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother. 2022;152:113238. https://doi.org/10.1016/j.biopha.2022.113238.

    Article  CAS  PubMed  Google Scholar 

  44. Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020;467(1–2):1–12. https://doi.org/10.1007/s11010-019-03667-9.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov. 2023;9(1):320. https://doi.org/10.1038/s41420-023-01613-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo Y, Guan T, Shafiq K, Yu Q, Jiao X, Na D, Li M, Zhang G, Kong J. Mitochondrial dysfunction in aging. Ageing Res Rev. 2023;88:101955.https://doi.org/10.1016/j.arr.2023.101955.

  47. Portal-Núñez S, Esbrit P, Alcaraz MJ, Largo R. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol. 2016;108:1–10. https://doi.org/10.1016/j.bcp.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  48. Quan YY, Qin GQ, Huang H, Liu YH, Wang XP, Chen TS. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis. Free Radic Biol Med. 2016;94:135–44. https://doi.org/10.1016/j.freeradbiomed.2016.02.026.

    Article  CAS  PubMed  Google Scholar 

  49. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taketa K, Matsumura T, Yano M, Ishii N, Senokuchi T, Motoshima H, Murata Y, Kim-Mitsuyama S, Kawada T, Itabe H, Takeya M, Nishikawa T, Tsuruzoe K, Araki E. Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem. 2008;283(15):9852–62. https://doi.org/10.1074/jbc.M703318200.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou F, Mei J, Han X, Li H, Yang S, Wang M, Chu L, Qiao H, Tang T. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B. 2019;9(5):973–85. https://doi.org/10.1016/j.apsb.2019.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khan NM, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med. 2017;106:288–301. https://doi.org/10.1016/j.freeradbiomed.2017.02.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minguzzi M, Cetrullo S, D’Adamo S, Silvestri Y, Flamigni F, Borzì RM. Emerging players at the intersection of chondrocyte loss of maturational arrest, oxidative stress, senescence and low-grade inflammation in osteoarthritis. Oxid Med Cell Longev. 2018;2018:3075293. https://doi.org/10.1155/2018/3075293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu L, Luo P, Yang M, Wang J, Hou W, Xu P. The role of oxidative stress in the development of knee osteoarthritis: a comprehensive research review. Front Mol Biosci. 2022;9:1001212. https://doi.org/10.3389/fmolb.2022.1001212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother. 2020;129:110452. https://doi.org/10.1016/j.biopha.2020.110452 .

  56. de Lange-Brokaar BJ, Ioan-Facsinay A, Yusuf E, Visser AW, Kroon HM, van Osch GJ, Zuurmond AM, Stojanovic-Susulic V, Bloem JL, Nelissen RG, Huizinga TW, Kloppenburg M. Association of pain in knee osteoarthritis with distinct patterns of synovitis. Arthritis Rheumatol. 2015;67(3):733–40. https://doi.org/10.1002/art.38965.

    Article  PubMed  Google Scholar 

  57. Wood MJ, Miller RE, Malfait AM. The genesis of pain in osteoarthritis: inflammation as a mediator of osteoarthritis pain. Clin Geriatr Med. 2022;38(2):221–38. https://doi.org/10.1016/j.cger.2021.11.013.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 2021;22(17):9208. https://doi.org/10.3390/ijms22179208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trouvin AP, Perrot S. Pain in osteoarthritis. Implications for optimal management. Joint Bone Spine. 2018;85,4:429–34. https://doi.org/10.1016/j.jbspin.2017.08.002.

  60. Zhao W, Wang H, Han Y, Wang H, Sun Y, Zhang H. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl Mater Interfaces. 2020;12(46):51236–48. https://doi.org/10.1021/acsami.0c14805.

    Article  CAS  PubMed  Google Scholar 

  61. Shi G, Jiang H, Yang F, Lin Z, Li M, Guo J, Liao X, Lin Y, Cai X, Li D. NIR-responsive molybdenum (Mo)-based nanoclusters enhance ROS scavenging for osteoarthritis therapy. Pharmacol Res. 2023;192:106768. https://doi.org/10.1016/j.phrs.2023.106768.

    Article  CAS  PubMed  Google Scholar 

  62. Sun X, Li L, Liu Y, Wang W, Yao M, Tan J, Ren Y, Deng K, Ma Y, Wang Y, Chen J, Huang W, Xia Q, Li Y, Shang H. Assessing clinical effects of traditional Chinese medicine interventions: moving beyond randomized controlled trials. Front Pharmacol. 2021;12.

  63. Lam TP. Strengths and weaknesses of traditional Chinese medicine and Western medicine in the eyes of some Hong Kong Chinese. J Epidemiol Community Health. 2001;55(10):762–5. https://doi.org/10.1136/jech.55.10.762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xia W, Liu B, Tang S, Yasir M, Khan I. The science behind TCM and Gut microbiota interaction-their combinatorial approach holds promising therapeutic applications. Front Cell Infect Microbiol. 2022;12:875513. https://doi.org/10.3389/fcimb.2022.875513 .

  65. Gu P, Chen H. Modern bioinformatics meets traditional Chinese medicine. Brief Bioinform. 2014;15(6):984–1003. https://doi.org/10.1093/bib/bbt063.

    Article  CAS  PubMed  Google Scholar 

  66. Tian L, Ke X, Sun Y, Lin C, Chen Q, Huang M. Development of nano-traditional chinese medicine and modernization of traditional Chinese medicine [J]. World Chin Med. 2023;18:588–92. https://doi.org/10.3969/j.issn.1673-7202.2023.04.026.

    Article  CAS  Google Scholar 

  67. Ren Q, Li M, Deng Y, Lu A, Lu J. Triptolide delivery: nanotechnology-based carrier systems to enhance efficacy and limit toxicity. Pharmacol Res. 2021;165:105377. https://doi.org/10.1016/j.phrs.2020.105377.

    Article  CAS  PubMed  Google Scholar 

  68. Xu H, Yang X, Xie C, Yang Y. Application of nano-technology in the research of traditional Chinese medicine[J]. Journal of Huazhong University of Science and Technology. 2001;1:3–7.

    Google Scholar 

  69. Yi CX, Yu JN, Xu XM. Nanoscale drug carriers for traditional Chinese medicine research and development. Zhongguo Zhong Yao Za Zhi. 2008;33(16):1936–40.

    PubMed  Google Scholar 

  70. Zheng Y, Wang Y, Xia M, Gao Y, Zhang L, Song Y, Zhang C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res. 2022;12(6):1306–25. https://doi.org/10.1007/s13346-021-01029-x.

    Article  PubMed  Google Scholar 

  71. Nantarat N, Chansakaow S, Leelapornpisid P. Optimization, characterization and stability of essential oils blend loaded nanoemulsions by PIC technique for anti-tyrosinase activity. Int J Pharm Pharm Sci. 2015;7:308–12.

    CAS  Google Scholar 

  72. Donsì F, Cuomo A, Marchese E, Ferrari G. Infusion of essential oils for food stabilization: unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innov Food Sci Emerg Technol. 2014;22:212–20. https://doi.org/10.1016/j.ifset.2014.01.008.

    Article  CAS  Google Scholar 

  73. Valencia-Sullca C, Jiménez M, Jiménez A, Atarés L, Vargas M, Chiralt A. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym Int. 2016;65:979–87. https://doi.org/10.1002/pi.5143.

    Article  CAS  Google Scholar 

  74. Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine. 2012;7:2033–43. https://doi.org/10.2147/IJN.S30085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lai F, Wissing SA, Müller RH, Fadda AM. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech. 2006;7(1):E2. https://doi.org/10.1208/pt070102.

    Article  PubMed  Google Scholar 

  76. Spratlin J, Sawyer MB. Pharmacogenetics of paclitaxel metabolism. Crit Rev Oncol Hematol. 2007;61(3):222–9. https://doi.org/10.1016/j.critrevonc.2006.09.006.

    Article  PubMed  Google Scholar 

  77. Hong SS, Choi JY, Kim JO, Lee MK, Kim SH, Lim SJ. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int J Nanomedicine. 2016;11:4465–77. https://doi.org/10.2147/IJN.S113723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta U, Sharma S, Khan I, Gothwal A, Sharma AK, Singh Y, Chourasia MK, Kumar V. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. Int J Biol Macromol. 2017;98:810–9. https://doi.org/10.1016/j.ijbiomac.2017.02.030.

    Article  CAS  PubMed  Google Scholar 

  79. Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40(5):327–41. https://doi.org/10.1016/j.tips.2019.03.002.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang YQ, Shen Y, Liao MM, Mao X, Mi GJ, You C, Guo QY, Li WJ, Wang XY, Lin N, Webster TJ. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine. 2019;15(1):86–97. https://doi.org/10.1016/j.nano.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou T, Zhang W, Cheng D, Tang X, Feng J, Wu W. Preparation, Characterization, and in vivo evaluation of NK4-conjugated hydroxycamptothecin-loaded liposomes. Int J Nanomedicine. 2020;15:2277–86. https://doi.org/10.2147/IJN.S243746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou C, Ma N, Shen Z, Chi G, Chao S, Pei Y, Chen L, Lu Y, Pei Z. A GSH-Responsive nanoprodrug system based on self-assembly of lactose modified camptothecin for targeted drug delivery and combination chemotherapy. Int J Nanomedicine. 2020;15:10417–24. https://doi.org/10.2147/IJN.S276470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20. https://doi.org/10.1023/a:1016212804288.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm. 2019;570:118642. https://doi.org/10.1016/j.ijpharm.2019.118642.

    Article  CAS  PubMed  Google Scholar 

  85. Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15. https://doi.org/10.2147/IJN.S52634.

    Article  PubMed  Google Scholar 

  86. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107. https://doi.org/10.1016/j.addr.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  88. Stuurman FE, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet. 2013;52(6):399–414. https://doi.org/10.1007/s40262-013-0040-2.

    Article  CAS  PubMed  Google Scholar 

  89. Murakami T. Absorption sites of orally administered drugs in the small intestine. Expert Opin Drug Discov. 2017;12(12):1219–32. https://doi.org/10.1080/17460441.2017.1378176.

    Article  CAS  PubMed  Google Scholar 

  90. Li H, Dong L, Liu Y, Wang G, Wang G, Qiao Y. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats. Int J Pharm. 2014;466(1–2):133–8. https://doi.org/10.1016/j.ijpharm.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  91. Chen T, Liu W, Xiong S, Li D, Fang S, Wu Z, Wang Q, Chen X. Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl Mater Interfaces. 2019;11(48):45276–89. https://doi.org/10.1021/acsami.9b16047.

    Article  CAS  PubMed  Google Scholar 

  92. Smith DA, Beaumont K, Maurer TS, Di L. Relevance of half-life in drug design. J Med Chem. 2018;61(10):4273–82. https://doi.org/10.1021/acs.jmedchem.7b00969.

    Article  CAS  PubMed  Google Scholar 

  93. Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond). 2018;13(12):1495–512. https://doi.org/10.2217/nnm-2018-0040.

    Article  CAS  PubMed  Google Scholar 

  94. Lin T, Huang X, Wang Y, Zhu T, Luo Q, Wang X, Zhou K, Cheng H, Peng D, Chen W. Long circulation nanostructured lipid carriers for gambogenic acid: formulation design, characterization, and pharmacokinetic. Xenobiotica. 2017;47(9):793–9. https://doi.org/10.1080/00498254.2016.1229084.

    Article  CAS  PubMed  Google Scholar 

  95. Dong Z, Guo J, Xing X, Zhang X, Du Y, Lu Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother. 2017;89:297–304. https://doi.org/10.1016/j.biopha.2017.02.029.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang S, Wang J, Pan J. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats. Drug Deliv. 2016;23(9):3696–703. https://doi.org/10.1080/10717544.2016.1223218.

    Article  CAS  PubMed  Google Scholar 

  97. Liu Y, Niu T, Zhang L, Yang J. Review on nano-drugs. Nat Sci. 2010;2:41–8. https://doi.org/10.4236/ns.2010.21006.

    Article  CAS  Google Scholar 

  98. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5. https://doi.org/10.1016/j.addr.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  99. Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol. 2007;59(1):75–80. https://doi.org/10.1211/jpp.59.1.0010.

    Article  CAS  PubMed  Google Scholar 

  100. Khan S, Setua S, Kumari S, Dan N, Massey A, Hafeez BB, Yallapu MM, Stiles ZE, Alabkaa A, Yue J, Ganju A, Behrman S, Jaggi M, Chauhan SC. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials. 2019;208:83–97. https://doi.org/10.1016/j.biomaterials.2019.04.005.

    Article  CAS  PubMed  Google Scholar 

  101. Yan Z, Wang Q, Liu X, Peng J, Li Q, Wu M, Lin J. Cationic nanomicelles derived from Pluronic F127 as delivery vehicles of Chinese herbal medicine active components of ursolic acid for colorectal cancer treatment. RSC Adv. 2018;8(29):15906–14. https://doi.org/10.1039/c8ra01071d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, de Vries P. Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release. 2001;74(1–3):243–7. https://doi.org/10.1016/s0168-3659(01)00323-6.

    Article  CAS  PubMed  Google Scholar 

  103. Wang M, Guan E, Li M, Bian K. Preparation of curcumin-starch nano-microcapsules and its antioxidant research[J]. Journal of Henan University of Technology. 2022;43,4:38–45,53. https://doi.org/10.16433/j.1673-2383.2022.04.005.

  104. Wang Y. The construction of curcumin-loaded lactoferrin peptides self-assembled nano-micelles and their intervention on the oxidative stress-mediated injury of bEnd.3 cells. Northwest A & F Universit. 2022.

  105. Zhang S, Ou Q, Xin P, Yuan Q, Wang Y, Wu J. Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing. Biomater Sci. 2019;7(10):4230–6. https://doi.org/10.1039/c9bm00991d.

    Article  CAS  PubMed  Google Scholar 

  106. Xu P, Qian Y, Wang R, Chen Z, Wang T. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles. Food Chem. 2022;387:132906. https://doi.org/10.1016/j.foodchem.2022.132906.

    Article  CAS  PubMed  Google Scholar 

  107. Huang Y. The research on the microwave extraction of curcumin and rutin and construction of their nano-drug delivery systems with antioxidant activity. Chongqing Medical University. 2016.

  108. Rajasekar A, Devasena T. Facile synthesis of curcumin nanocrystals and validation of its antioxidant activity against circulatory toxicity in wistar rats. J Nanosci Nanotechnol. 2015;15(6):4119–25. https://doi.org/10.1166/jnn.2015.9600.

    Article  CAS  PubMed  Google Scholar 

  109. Gao S, Duan X, Wang X, Dong D, Liu D, Li X, Sun G, Li B. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol. 2013;59:739–47. https://doi.org/10.1016/j.fct.2013.07.032.

    Article  CAS  PubMed  Google Scholar 

  110. Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-κB signalling in lymphoma-bearing mice. Biosci Rep. 2012;32(2):161–70. https://doi.org/10.1042/BSR20110043.

    Article  CAS  PubMed  Google Scholar 

  111. Huang L, Shao M, Zhu Y. Gastrodin inhibits high glucose-induced inflammation, oxidative stress and apoptosis in podocytes by activating the AMPK/Nrf2 signaling pathway. Exp Ther Med. 2022;23(2):168. https://doi.org/10.3892/etm.2021.11091.

    Article  CAS  PubMed  Google Scholar 

  112. Saraswat G, Guha R, Mondal K, Saha P, Banerjee S, Chakraborty P, Konar A, Kabir SN. Molecular cues to the anti-implantation effect of nano-puerarin in rats. Reproduction. 2016;151(6):693–707. https://doi.org/10.1530/REP-16-0035.

    Article  CAS  PubMed  Google Scholar 

  113. Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm. 2013;85(3PtA):339–345. https://doi.org/10.1016/j.ejpb.2013.02.005.

  114. Ranjbar A, Gholami L, Ghasemi H, Kheiripour N. Eeffects of nano-curcumin and curcumin on the oxidant and antioxidant system of the liver mitochondria in aluminum phosphide-induced experimental toxicity. Nanomed J. 2019;7:58–64. https://doi.org/10.22038/nmj.2019.41594.1429.

  115. Martakov IS, Shevchenko OG. Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles. J Inorg Biochem. 2020;210:111168. https://doi.org/10.1016/j.jinorgbio.2020.111168.

    Article  CAS  PubMed  Google Scholar 

  116. Y Yadav A, Lomash V, Samim M, Flora SJ. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chem Biol Interact. 2012;199,1:49–61. https://doi.org/10.1016/j.cbi.2012.05.011.

  117. Saha L, Kumari P, Rawat K, Gautam V, Sandhu A, Singh N, Bhatia A, Bhattacharya S, Sinha VR, Chakrabarti A. Neuroprotective effect of berberine nanoparticles against seizures in pentylenetetrazole induced kindling model of epileptogenesis: role of anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Neurochem Res. 2023;48(10):3055–72. https://doi.org/10.1007/s11064-023-03967-z.

    Article  CAS  PubMed  Google Scholar 

  118. Asher GN, Spelman K. Clinical utility of curcumin extract. Altern Ther Health Med. 2013;19(2):20–2.

    PubMed  Google Scholar 

  119. Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, Chen H. Efficacy and safety of curcumin and curcuma longa extract in the treatment of arthritis: a systematic review and meta-analysis of randomized controlled trial. Front Immunol. 2022;13:891822. https://doi.org/10.3389/fimmu.2022.891822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zeng L, Yu G, Hao W, Yang K, Chen H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep. 2021;41,6:BSR20210817. https://doi.org/10.1042/BSR20210817.

  121. Bannuru RR, Osani MC, Al-Eid F, Wang C. Efficacy of curcumin and Boswellia for knee osteoarthritis: systematic review and meta-analysis. Semin Arthritis Rheum. 2018;48(3):416–29. https://doi.org/10.1016/j.semarthrit.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shen L, Liu CC, An CY, Ji HF. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep. 2016;6:20872. https://doi.org/10.1038/srep20872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yeh CC, Su YH, Lin YJ, Chen PJ, Shi CS, Chen CN, Chang HI. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin)-loaded liposomes against bone turnover in a cell-based model of osteoarthritis. Drug Des Devel Ther. 2015;9:2285–300. https://doi.org/10.2147/DDDT.S78277.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang Z, Leong DJ, Xu L, He Z, Wang A, Navati M, Kim SJ, Hirsh DM, Hardin JA, Cobelli NJ, Friedman JM, Sun HB. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther. 2016;18(1):128. https://doi.org/10.1186/s13075-016-1025-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dai W, Jin P, Li X, Zhao J, Lan Y, Li H, Zheng L. A carrier-free nano-drug assembled via π-π stacking interaction for the treatment of osteoarthritis. Biomed Pharmacother. 2023;164:114881. https://doi.org/10.1016/j.biopha.2023.114881.

    Article  CAS  PubMed  Google Scholar 

  126. Yan F, Li H, Zhong Z, Zhou M, Lin Y, Tang C, Li C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int J Nanomedicine. 2019;14:9113–25. https://doi.org/10.2147/IJN.S219413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cheragh-Birjandi S, Moghbeli M, Haghighi F, Safdari MR, Baghernezhad M, Akhavan A, Ganji R. Impact of resistance exercises and nano-curcumin on synovial levels of collagenase and nitric oxide in women with knee osteoarthritis. Translational Medicine Communications. 2020;5(1):3. https://doi.org/10.1186/s41231-020-00055-0.

    Article  Google Scholar 

  128. Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol. 2023;14:1243820. https://doi.org/10.3389/fphar.2023.1243820.

  129. Lou T, Zhang Z, Xi Z, Liu K, Li L, Liu B, Huang F. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation. 2011;34(6):659–67. https://doi.org/10.1007/s10753-010-9276-2.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang S, Zhang B, Dai W, Zhang X. Oxidative damage and antioxidant responses in Microcystis aeruginosa exposed to the allelochemical berberine isolated from golden thread. J Plant Physiol. 2011;168(7):639–43. https://doi.org/10.1016/j.jplph.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  131. Zhou JY, Zhou SW. Protective effect of berberine on antioxidant enzymes and positive transcription elongation factor b expression in diabetic rat liver. Fitoterapia. 2011;82(2):184–9. https://doi.org/10.1016/j.fitote.2010.08.019.

    Article  CAS  PubMed  Google Scholar 

  132. Mombeini MA, Kalantar H, Sadeghi E, Goudarzi M, Khalili H, Kalantar M. Protective effects of berberine as a natural antioxidant and anti-inflammatory agent against nephrotoxicity induced by cyclophosphamide in mice. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(2):187–94. https://doi.org/10.1007/s00210-021-02182-3.

    Article  CAS  PubMed  Google Scholar 

  133. Fan XX, Xu MZ, Leung EL, Jun C, Yuan Z, Liu L. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nanomicro Lett. 2020;12(1):76. https://doi.org/10.1007/s40820-020-0410-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bakshi J, Lathar P, Mehra M, Grewal S, Dhingra D, Kumari S. Evaluation of anti-inflammatory response of berberine-loaded gum nanocomplexes in carrageenan-induced acute paw edema in rats. Pharmacol Rep. 2022;74(2):392–405. https://doi.org/10.1007/s43440-021-00350-z.

    Article  CAS  PubMed  Google Scholar 

  135. Zhao L, Du X, Tian J, Kang X, Li Y, Dai W, Li D, Zhang S, Li C. Berberine-loaded carboxylmethyl chitosan nanoparticles ameliorate DSS-induced colitis and remodel gut microbiota in mice. Front Pharmacol. 2021;12:644387. https://doi.org/10.3389/fphar.2021.644387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhou Y, Liu SQ, Peng H, Yu L, He B, Zhao Q. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol. 2015;28(1):34–43. https://doi.org/10.1016/j.intimp.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  137. Chen Z, Liu D, Wang J, Wu L, Li W, Chen J, Cai BC, Cheng H. Development of nanoparticles-in-microparticles system for improved local retention after intra-articular injection. Drug Deliv. 2014;21(5):342–50. https://doi.org/10.3109/10717544.2013.848495.

    Article  CAS  PubMed  Google Scholar 

  138. Kulsirirat T, Sathirakul K, Kamei N, Takeda-Morishita M. The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint. Int J Pharm. 2021;602:120618. https://doi.org/10.1016/j.ijpharm.2021.120618.

    Article  CAS  PubMed  Google Scholar 

  139. Ouyang Z, Tan T, Liu C, Duan J, Wang W, Guo X, Zhang Q, Li Z, Huang Q, Dou P, Liu T. Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd2(CO3)3@PDA nanoparticles via TLR-2/NF-κB/Akt signaling. Biomaterials. 2019;205:50–63. https://doi.org/10.1016/j.biomaterials.2019.03.018.

    Article  CAS  PubMed  Google Scholar 

  140. Bhalekar MR, Madgulkar AR, Desale PS, Marium G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm. 2017;43(6):1003–10. https://doi.org/10.1080/03639045.2017.1291666.

    Article  CAS  PubMed  Google Scholar 

  141. Lu G, Du L, Lu J, Jin L. Nanoparticles containing hyaluronan acid and astragalus polysaccharides for treating osteoarthritis. Int J Polym Sci. 2019;2019:8143528. https://doi.org/10.1155/2019/8143528.

    Article  CAS  Google Scholar 

  142. Liu Y, Zhu H, Zhou W, Ye Q. Anti-inflammatory and anti-gouty-arthritic effect of free Ginsenoside Rb1 and nano Ginsenoside Rb1 against MSU induced gouty arthritis in experimental animals. Chem Biol Interact. 2020;332:109285. https://doi.org/10.1016/j.cbi.2020.109285 .

  143. Qadir A, Aqil M, Ahmad U, Khan N, Warsi MH, Akhtar J, Arif M, Ali A, Singh SP. Date seed extract-loaded oil-in-water nanoemulsion: development, characterization, and antioxidant activity as a delivery model for rheumatoid arthritis. J Pharm Bioallied Sci. 2020;12(3):308–16. https://doi.org/10.4103/jpbs.JPBS_268_20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cadena PG, Pereira MA, Cordeiro RB, Cavalcanti IM, Barros Neto B, Pimentel Mdo C, Lima Filho JL, Silva VL, Santos-Magalhães NS. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim Biophys Acta. 2013;1828(2):309–16. https://doi.org/10.1016/j.bbamem.2012.10.022.

    Article  CAS  PubMed  Google Scholar 

  145. Li J, Chen J, Cai BC, Yang T. Preparation, characterization and tissue distribution of brucine stealth liposomes with different lipid composition. Pharm Dev Technol. 2013;18(4):772–8. https://doi.org/10.3109/10837450.2011.598165.

    Article  CAS  PubMed  Google Scholar 

  146. Chen SF, Lu WF, Wen ZY, Li Q, Chen JH. Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles. Pharmazie. 2012;67(9):781–8.

    CAS  PubMed  Google Scholar 

  147. Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, Li Y, Qian ZY, Gao X, Shi HS. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521–31. https://doi.org/10.2147/IJN.S45250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3):102–10. https://doi.org/10.1016/j.cocis.2005.06.004.

    Article  CAS  Google Scholar 

  149. Xu H, Hu M, Liu M, An S, Guan K, Wang M, Li L, Zhang J, Li J, Huang L. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials. 2020;235:119769. https://doi.org/10.1016/j.biomaterials.2020.119769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhai M, Yu L. Research progress of pueraria preparation[J]. Journal of Tianjin University of Traditional Chinese Medicine. 2017;36:232–6.

    Google Scholar 

  151. Xia L. Research progress on chemical constituents and preparations of Erigeron breviscapus [J]. China Pharmacy. 2016;27:111–3.

    Google Scholar 

  152. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41(6):2323–43. https://doi.org/10.1039/c1cs15188f.

    Article  CAS  PubMed  Google Scholar 

  153. Asgharian B, Price OT. Deposition of ultrafine (nano) particles in the human lung. Inhal Toxicol. 2007;19(13):1045–54. https://doi.org/10.1080/08958370701626501.

    Article  CAS  PubMed  Google Scholar 

  154. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, Fresta M, Nie G, Chen C, Shen H, Ferrari M, Zhao Y. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–81. https://doi.org/10.2174/1389450115666140804124808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang H, Wu G, He X. Application of nanotechnology in Chinese medicine [J]. World Journal of Integrated Traditional and Western Medicine. 2022;17:1679–84.

    Google Scholar 

Download references

Acknowledgements

All authors have conveyed their sincere gratitude to scientists and researchers who had worked in nano-traditional Chinese medicine and contributed their valuable results in the literature. All authors expressed their sincere thanks to all the expert reviewers for their valuable time and suggestions for shaping up this manuscript.

Funding

This study was funded by the National Nature Science Foundation of China (Grant No. 81860256) and the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 171098).

Author information

Authors and Affiliations

Authors

Contributions

SL had the idea for the article, YP and ZY performed the literature and wrote the first draft of the manuscript, and JL critically revised the work. YP and ZY contributed equally to this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinling Li or Sijia Liu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Yang, Z., Li, J. et al. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv. and Transl. Res. 14, 1517–1534 (2024). https://doi.org/10.1007/s13346-024-01517-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-024-01517-w

Keywords

Navigation