Skip to main content

Advertisement

Log in

Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Lyophilization also known as freeze-drying is a technique that has been employed to enhance the long-term durability of nanoparticles (NPs) that are utilized for drug delivery applications. This method is used to prevent their instability in suspension. However, this dehydration process can cause stress to the NPs, which can be alleviated by the incorporation of excipients like cryoprotectants and lyoprotectants. Nevertheless, the freeze-drying of NPs is often based on empirical principles without considering the physical–chemical properties of the formulations and the engineering principles of freeze-drying. For this reason, it is crucial to optimize the formulations and the freeze-drying cycle to obtain a good lyophilizate and ensure the preservation of NPs stability. Moreover, proper characterization of the lyophilizate and NPs is of utmost importance in achieving these goals. This review aims to update the recent advancements, including innovative formulations and novel approaches, contributing to the progress in this field, to obtain the maximum stability of formulations. Additionally, we critically analyze the limitations of lyophilization and discuss potential future directions. It addresses the challenges faced by researchers and suggests avenues for further research to overcome these limitations. In conclusion, this review is a valuable contribution to the understanding of the parameters involved in the freeze-drying of NPs. It will definitely aid future studies in obtaining lyophilized NPs with good quality and enhanced drug delivery and therapeutic benefits.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

FZ:

Freezing

PD:

Primary drying

SD:

Secondary drying

USFDA:

United States Food and Drug Administration

QBD:

Quality by design

RA:

Risk assessment

DS:

Design space

PAT:

Process analytical technology

QTPP:

Quality target product profile

T g :

Glass transition temperature

T e :

Eutectic temperature

T c :

Collapse temperature

ICH:

International Conference on Harmonisation

GAMP:

Good automated manufacturing practice

CFR:

Code of federal regulations

CAGR:

Compound annual growth rate

TEM:

Transmission electron microscopy

R&D:

Research and development

IQF:

Individually quick-frozen

SLNs:

Solid lipid nanoparticles

PDI:

Polydispersity index

ZP:

Zeta potential

EE%:

Entrapment efficiency

TFFD:

Thin film freeze drying

SNEDDS:

Self-nanoemulsifying drug delivery system

DSC:

Differential scanning calorimetry

XRD:

X-ray diffraction

NMs:

Nanomicelles

QUE:

Quercetin

CUR:

Curcumin

CSA:

Cyclosporin A

MCFAs:

Medium-chain fatty acids

Vit. C:

Vitamin C

REOs:

Rosemary essential oils

NE:

Nanoemulsion

PLGA:

Poly (lactic-co-glycolic acid)

CNTs:

Carbon nanotubes

GNRs:

Gold nanorods

AChE:

Acetylcholinesterase

References

  1. Chen Y, Mutukuri TT, Wilson NE, Zhou QT. Pharmaceutical protein solids: drying technology, solid-state characterization and stability. Adv Drug Deliv Rev. 2021;172:211–33. https://doi.org/10.1016/J.ADDR.2021.02.016.

  2. Varshney D, Shing M. History of lyophilization. In: Varshney D, Singh M, editors. Lyophilized biologics and vaccines. New York: Springer Science; 2015. p. 3–10. https://doi.org/10.1007/978-1-4939-2383-0_1.

    Chapter  Google Scholar 

  3. 12 steps of lyophilization history you should know. https://www.lyophilizationworld.com/post/2019/02/06/12-steps-of-lyophilization-history-you-should-know. 2019. Accessed 21 Jun 2023.

  4. Narayana D. Fundamentals and applications of freeze-drying. https://biotecharticles.com/Applications-Article/Fundamentals-and-Applications-of-Freeze-Drying-3557.html. 2016.

  5. Nowak D, Jakubczyk E. The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods. 2020;9:1488. https://doi.org/10.3390/foods9101488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy I, Gupta MN. Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem. 2004;39:165. https://doi.org/10.1042/BA20030133.

  7. Kasper JC, Winter G, Fries W. Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm. 2013;85:162–9. https://doi.org/10.1016/J.EJPB.2013.05.019.

    Article  CAS  PubMed  Google Scholar 

  8. Stratta L, Capozzi LC, Franzino S, Pisano R. Economic analysis of a freeze-drying cycle. Processes. 2020;8(11):1399. https://doi.org/10.3390/pr8111399.

    Article  Google Scholar 

  9. Passot S, Trelea IC, Marin M, Galan M, Morris GJ, Fonseca F. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer. J Biomech Eng. 2009;131:074511–6. https://doi.org/10.1115/1.3143034.

    Article  PubMed  Google Scholar 

  10. Liu J, Viverette T, Virgin M, Anderson M, Dalal P. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. Pharm Dev Technol. 2005;10:261–72. https://doi.org/10.1081/PDT-54452.

    Article  CAS  PubMed  Google Scholar 

  11. Searles JA. Freezing and annealing phenomena in lyophilization. In: Rey L, May JC, editors. Freeze drying/lyophilization of pharmaceutical and biological products. London: Informa Healthcare; 2010. p. 52–81.

    Google Scholar 

  12. Pharmaceutical CGMPS for the 21st century-a risk-based approach final report. 2004.

  13. Lee SH, Kim JK, Jee JP, Jang DJ, Park YJ, Kim JE. Quality by design (QbD) application for the pharmaceutical development process. J Pharm Investig. 2022;52(6):649–82. https://doi.org/10.1007/s40005-022-00575-x.

    Article  Google Scholar 

  14. Recent advances in process optimization of vacuum freeze-drying. American pharmaceutical review - the review of American pharmaceutical business & technology, (n.d.); 2023. https://www.americanpharmaceuticalreview.com/Featured-Articles/160258-Recent-Advances-in-Process-Optimization-of-Vacuum-Freeze-Drying/.

  15. Applying quality by design to lyophilization. BioPharm Int. 2012;25. https://www.biopharminternational.com/view/applying-quality-design-lyophilization. Accessed 21 Jun 2023.

  16. Jiang X, Kazarin P, Sinanis MD, Darwish A, Raghunathan N, Alexeenko A, et al. A non-invasive multipoint product temperature measurement for pharmaceutical lyophilization. Sci Reports. 2022;121:1–16. https://doi.org/10.1038/s41598-022-16073-x.

    Article  CAS  Google Scholar 

  17. Schneid S, Gieseler H. Evaluation of a new wireless temperature remote interrogation system (TEMPRIS) to measure product temperature during freeze drying. AAPS PharmSciTech. 2008;9:729–39. https://doi.org/10.1208/S12249-008-9099-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasper JC, Wiggenhorn M, Resch M, Friess W. Implementation and evaluation of an optical fiber system as novel process monitoring tool during lyophilization. Eur J Pharm Biopharm. 2013;83:449–59. https://doi.org/10.1016/J.EJPB.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  19. Temperature measurement in lyophilization with Tempris sensors. https://www.lyophilizationworld.com/post/2020/02/02/temperature-measurement-in-lyophilization-with-tempris-sensors. Accessed 21 Jun 2023.

  20. Patel SM, Pikal MJ. Freeze-drying in novel container system: characterization of heat and mass transfer in glass syringes. J Pharm Sci. 2010;99(7):3188–204. https://doi.org/10.1002/jps.22086. Accessed 21 Jun 2023.

  21. DeGrazio FL. Closure and container considerations in lyophilization. In: Rey L, May JC, editors. Freeze drying/ lyophilization of pharmaceutical and biological products. London: Informa Healthcare; 2010. p. 396–412.

    Google Scholar 

  22. Cullen S, Walsh E, Gervasi V, Khamar D, McCoy TR. Technical transfer and commercialisation of lyophilised biopharmaceuticals — application of lyophiliser characterization and comparability. AAPS Open. 2022;81:1–20. https://doi.org/10.1186/S41120-022-00059-0.

    Article  Google Scholar 

  23. Koganti VR, Shalaev EY, Berry MR, Osterberg T, Youssef M, Hiebert DN, et al. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle. AAPS PharmSciTech. 2011;12:854–61. https://doi.org/10.1208/S12249-011-9645-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Juckers A, Knerr P, Harms F, Strube J. Emerging PAT for freeze-drying processes for advanced process control. Process. 2022;10:2059. https://doi.org/10.3390/PR10102059.

    Article  Google Scholar 

  25. Alkeev N, Averin S, Son Gratowski S. New method for monitoring the process of freeze drying of biological materials. AAPS PharmSciTech. 2051;16:1474–79. https://doi.org/10.1208/S12249-015-0341-X.

  26. Adali MB, Barresi AA, Boccardo G, Pisano R. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Process. 2020;8: 709709. https://doi.org/10.3390/PR8060709.

    Article  Google Scholar 

  27. Henning Gieseler SN, Michael JP, Yves M, Steiner M. Applying quality by design to lyophilization. BioPharm Int. 2012;25.

  28. Freeze-drying market - global forecast to 2025 | MarketsandMarkets, (n.d.). https://www.marketsandmarkets.com/Market-Reports/freeze-drying-lyophilization-equipment-market-24018886.html . Accessed 21 Jun 2023.

  29. Utpal Kumar D, Ranjit B, Ganguly S. Freeze-drying technique and its wide application in biomedical and pharmaceutical sciences. Res J Chem Environ Sci. 2014;2(3):01–4.

    Google Scholar 

  30. Kunal AG, Mallinath H, Deepak B, Pallavi SN. Lyophilization / freeze drying – a review. W J Pharm Res. 2015;4(8):516–43.

    Google Scholar 

  31. Principle, construction, working, uses, merits and demerits of freeze dryer. Pharmaguideline. https://www.pharmaguideline.com/2007/02/principle-construction-working-uses-merits-demerits-of-freeze-dryers.html.

  32. Freeze dryer - how it works? https://www.solnpharma.com/2022/03/freeze-dryer-how-it-works.html .

  33. Manifold freeze dryers – an overview of their use, limitations and some helpful hints. https://www.millrocktech.com/wp-content/uploads/2017/04/Tech-Note-Manifold-freeze-dryers-An-overview-of-Their-Use-Limitations-and-Some-Helpful-Hints.pdf.

  34. Freeze drying market size, analysis, trends and forecast. https://straitsresearch.com/report/freeze-drying-market.

  35. Rhieu SY, Anderson DD, Janoria K. A regulatory perspective on manufacturing processes pertaining to lyophilized injectable products. AAPS J. 2020;22:1–8. https://doi.org/10.1208/s12248-020-00477-6.

    Article  Google Scholar 

  36. Janoria K. Current regulatory considerations on pharmaceutical lyophilization. (nd). www.fda.gov.

  37. Tundisi LL, Ataide JA, Costa JS, Coêlho DF, Liszbinski RB, Lopes AM, et al. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf. B. 2022;113043.

  38. Chaloner-Larsson G, Bioconsult G, Anderson OR, Antonio Da Fonseca M, Filho C, Gomez Herrera JF. A WHO guide to good manufacturing practice (GMP) requirements. http://apps.who.int/iris/bitstream/10665/64465/2/WHO_VSQ_97.02.pdf.

  39. FDA 21 CFR Part 11 - 7 tips to ensure compliance. https://www.greenlight.guru/blog/tips-to-comply-with-fda-21-cfr-part-11. 21 Jun 2023.

  40. Part 11, Electronic Records; Electronic signatures - scope and application, guidance for industry. 2003. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application.

  41. Molnar A, Lakat T, Hosszu ASzebeni B, Balogh A, Orfi L, et al. Lyophilization and homogenization of biological samples improves reproducibility and reduces standard deviation in molecular biology techniques. Amino Acids. 2021;53:917–28. https://doi.org/10.1007/S00726-021-02994-W.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bisht D, Iqbal Z. Lyophilization - process and optimization for pharmaceuticals. Int J Drug Regul Aff. 2018;3:30–40. https://doi.org/10.22270/IJDRA.V3I1.156.

  43. How COVID-19 affected the freeze-drying industry and what was learned. https://www.labmate-online.com/news/laboratory-products/3/biopharma-process-systems-btl/how-covid-19-affected-the-freeze-drying-industry-and-what-was-learned/54980.

  44. Lyophilization market outlook (2022–2032). https://www.factmr.com/report/lyophilization-market. Accessed 3 Oct 2023.

  45. Lyophilization market size, share & growth report 2032. https://www.factmr.com/report/lyophilization-market. Accessed 21 Jun 2023.

  46. Lyophilized product market size, trends and forecast to 2028. https://www.coherentmarketinsights.com/market-insight/lyophilized-product-market-4910. Accessed 21 Jun 2023.

  47. Straif-Bourgeois S, Ratard R, Kretzschmar M. Infectious disease epidemiology. Handb. Epidemiol. 2014:2041. https://doi.org/10.1007/978-0-387-09834-0_34.

  48. Top 10 companies in the freeze dried technology market. https://www.reportsanddata.com/blog/top-10-companies-in-the-freeze-dried-technology-market. Accessed 21 Jun 2023.

  49. Lyophilization of pharmaceuticals: an overview | LLS Health CDMO. https://lubrizolcdmo.com/blog/lyophilization-of-pharmaceuticals-an-overview/. Accessed 21 Jun 2023.

  50. AmBisome®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/050740Orig1s033lbl.pdf. Accessed 21 Jun 2023.

  51. Acetazolamide sodium- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205358Orig1s000lbl.pdf. Accessed 21 Jun 2023.

  52. Zithromax- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050733Orig1s049lbl.pdf. Accessed 21 Jun 2023.

  53. PROTONIX® I.V.- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/20988_Protonix. Accessed 21 Jun 2023.

  54. Zyprexa- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020592s074,021086s048,021253s061lbl.pdf. Accessed 21 Jun 2023.

  55. Eligard®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021731s005,021488s010,021379s010,021343s015lbl.pdf. Accessed 21 Jun 2023.

  56. Advate®- Package insert. USFDA. https://www.fda.gov/media/70008/download. Accessed 21 Jun 2023.

  57. Vfend®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021266s032lbl.pdf. Accessed 21 Jun 2023.

  58. CYTOVENE®-IV- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/019661s036lbl.pdf. Accessed 21 Jun 2023.

  59. Alimta- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021462s015lbl.pdf. Accessed 21 Jun 2023.

  60. Velcade- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021602s015lbl.pdf. Accessed 21 Jun 2023.

  61. Vidaza- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050974s034lbl.pdf. Accessed 21 Jun 2023.

  62. Abraxane®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021660s047lbl.pdf. Accessed 21 Jun 2023.

  63. Kyprolis®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202714s025lbl.pdf. Accessed 21 Jun 2023.

  64. Merrem® IV- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050706s037lbl.pdf. Accessed 21 Jun 2023.

  65. Herceptin® - Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Accessed 21 Jun 2023.

  66. BOTOX- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/103000s5232lbl.pdf.

  67. Orencia- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125118s171lbl.pdf. Accessed 21 Jun 2023.

  68. Avonex- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/103628s5189lbl.pdf. Accessed 21 Jun 2023.

  69. Remicade®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103772s5359lbl.pdf. Accessed 21 Jun 2023.

  70. Xolair®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/103976s5225lbl.pdf. Accessed 21 Jun 2023.

  71. Keytruda®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s066lbl.pdf. Accessed 21 Jun 2023.

  72. Cosentyx®- Package insert. USFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125504s043lbl.pdf. Accessed 21 Jun 2023.

  73. Kumar N, Jha A. Temperature excursion management: a novel approach of quality system in pharmaceutical industry. Saudi Pharm J. 2017;25(2):176–83. https://doi.org/10.1016/j.jsps.2016.07.001.

    Article  PubMed  Google Scholar 

  74. Jain K, Salamat-Miller N, Taylor K. Freeze-thaw characterization process to minimize aggregation and enable drug product manufacturing of protein based therapeutics. Sci Rep. 2021;11:11332. https://doi.org/10.1038/S41598-021-90772-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Authelin JR, Rodrigues MA, Tchessalov S, Singh SK, McCoy T, et al. Freezing of biologicals revisited: scale, stability, excipients, and degradation stresses. J Pharm Sci. 2020;109:44–61. https://doi.org/10.1016/J.XPHS.2019.10.062.

    Article  CAS  PubMed  Google Scholar 

  76. Singh S, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics: a practitioner’s review, part 2: Practical advice. Bioprocess Int. 2009;7:34–42.

    CAS  Google Scholar 

  77. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 207;12:505–23. https://doi.org/10.1080/10837450701481157.

  78. Evaluating Freeze-Thaw Processes in Biopharmaceutical development: small scale study design. https://www.sartorius.com/download/692844/bioprocess-int-freeze-thaw-processes-publication-en-jan-2015-1--data.pdf.

  79. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24:504–14. https://doi.org/10.1021/BP070462H.

    Article  CAS  PubMed  Google Scholar 

  80. Padala C, Jameel F, Rathore N, Gupta K, Sethuraman A. Impact of uncontrolled vs controlled rate freeze-thaw technologies on process performance and product quality. PDA J Pharm Sci Technol. 2010;64(4):290–8.

    CAS  PubMed  Google Scholar 

  81. Evaluating freeze/thaw processes in drug manufacturing. https://www.sartorius.com/en/knowledge/science-snippets/evaluating-freeze-thaw-processes-in-drug-manufacturing-701196. Accessed 22 Jun 2023.

  82. Awotwe-Otoo D, Khan M. Lyophilization of biologics: an FDA perspective. In: Varshney D, Singh M, editors. Lyophilized biologics and vaccines. Springer, New York, NY; 2015. https://doi.org/10.1007/978-1-4939-2383-0_15.

    Chapter  Google Scholar 

  83. Ozgyin L, Horvath A, Balint BL. Lyophilized human cells stored at room temperature preserve multiple RNA species at excellent quality for RNA sequencing. Oncotarget. 2018;9(59):31312–29. https://doi.org/10.18632/oncotarget.25764.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nkenyi R, Pak GD, Tonga C, et al. A retrospective review of vaccine wastage and associated risk factors in the Littoral region of Cameroon during 2016–2017. BMC Public Health. 2022;22:1956. https://doi.org/10.1186/s12889-022-14328-w.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lyophilization of pharmaceuticals: an overview. https://lubrizolcdmo.com/blog/lyophilization-of-pharmaceuticals-an-overview/.

  86. Beech KE, Biddlecombe JG, Van Der Walle CF, Stevens LA, Rigby SP, Burley JC, Allen S. Insights into the influence of the cooling profile on the reconstitution times of amorphous lyophilized protein formulations. Eur J Pharm Biopharm. 2015;96:247–54.

  87. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79(3):405–18. https://doi.org/10.1111/bcp.12268.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hajare AA, More HN. Design of the lyophilization process of a doxorubicin formulation based on thermal properties. Indian J Pharm Sci. 2017;79(6):907–913.

  89. Lim JY, Kim NA, Lim DG, Kim KH, Choi DH, Jeong SH. Process cycle development of freeze drying for therapeutic proteins with stability evaluation. J Pharm Investig. 2016;46. https://doi.org/10.1007/s40005-016-0275-7.

  90. Challener C. For lyophilization, excipients really do matter. BioPharm International, BioPharm Int. 2017;30(1):32–5. https://www.biopharminternational.com/view/lyophilization-excipients-really-do-matter.

  91. Ionova Y, Wilson L. Biologic excipients: importance of clinical awareness of inactive ingredients. PLoS ONE. 2020;15(6):e0235076. https://doi.org/10.1371/journal.pone.0235076.

  92. Lale SV, Goyal M, Bansal AK. Development of lyophilization cycle and effect of excipients on the stability of catalase during lyophilization. Int J Pharm Investig. 2011;1(4):214–21. https://doi.org/10.4103/2230-973X.93007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shah S, Nene S, Rangaraj N, Raghuvanshi RS, Singh SB, Srivastava S. Bridging the gap: academia, industry and FDA convergence for nanomaterials. Drug Dev Ind Pharm. 2020;46(11):1735–46.

    Article  CAS  PubMed  Google Scholar 

  94. Badmus UO, Taggart MA, Boyd KG. The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. J Appl Phycol. 2019;31:3883–97. https://doi.org/10.1007/s10811-019-01846-1.

    Article  CAS  Google Scholar 

  95. Covarrubias CE, Rivera TA, Soto CA, Deeks T, Kalergis AM. Current GMP standards for the production of vaccines and antibodies: an overview. Front Public Health. 2022;3(10):1021905. https://doi.org/10.3389/fpubh.2022.1021905.

    Article  Google Scholar 

  96. Agbozo EY, Dumashie E, Boakye DA, et al. Effects of lyophilization and storage temperature on Wuchereria bancrofti antigen sensitivity and stability. BMC Res Notes. 2018;11:454. https://doi.org/10.1186/s13104-018-3586-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Choi TJ, Jang SP, Jung DS, Lim HM, Byeon YM, Choi IJ. Effect of the freeze-thaw on the suspension stability and thermal conductivity of EG/water-based Al 2 O 3 nanofluids. J Nanomater. 2019. https://doi.org/10.1155/2019/2076341.

  98. Liu Y, Zhao Y, Feng X. Exergy analysis for a freeze-drying process. 2007. https://doi.org/10.1016/j.applthermaleng.2007.06.004.

    Article  Google Scholar 

  99. Shukla S. Freeze drying process: a review. https://doi.org/10.13040/IJPSR.0975-8232.2(12).3061-68.

  100. Gaidhani KA, Harwalkar M., Bhambere D, Nirgude PS. Lyophilizaton/freeze drying a review. World J Pharm Res. 2015;516–43.

  101. Connolly BD, Le L, Patapoff TW, Cromwell MEM, Moore JMR, Lam P. Protein aggregation in frozen trehalose formulations: effects of composition, cooling rate, and storage temperature. J Pharm Sci. 2015;104:4170–84. https://doi.org/10.1002/JPS.24646.

    Article  CAS  PubMed  Google Scholar 

  102. Bano G, De-luca R, Tomba E, Marcelli A, Bezzo F, Barolo M. Primary drying optimization in pharmaceutical freeze-drying: a multivial stochastic modeling framework. Ind Eng Chem Res. 2020;59:5056–71. https://doi.org/10.1021/acs.iecr.9b06402.

    Article  CAS  Google Scholar 

  103. Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J Pharm Sci. 2019;108:1378–95. https://doi.org/10.1016/J.XPHS.2018.11.039.

  104. Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Freeze-drying: a relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Adv Food Nutr. Res. 2020; 93:1–58. https://doi.org/10.1016/BS.AFNR.2020.04.001.

  105. Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPSPharmSciTech. 2010;11:73–84. https://doi.org/10.1208/S12249-009-9362-7.

    Article  CAS  Google Scholar 

  106. Patel SM, Pikal MJ. Emerging freeze-drying process development and scale-up issues. AAPS PharmSciTech. 2011;12:372–8. https://doi.org/10.1208/S12249-011-9599-9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Solutions EV. The freeze drying theory and process-things to consider. Ellab White Pap. 2018:1–6. https://www.ellab.com/wp-content/uploads/2020/08/the-freeze-drying-theory-and-process_ellab-whitepaper.pdf.

  108. Bio-Resource: principle, methods & factors affecting lyophilization / freeze drying. (nd). http://technologyinscience.blogspot.com/2011/12/principle-methods-factors-affecting.html. Accessed 22 Jun 2023.

  109. Introduction to freeze-drying and ice templating. 2018. https://application.wiley-vch.de/books/sample/3527342729_c01.pdf.

  110. Common mistakes when using a laboratory freeze dryer - Labconco. https://www.labconco.com/articles/common-mistakes-using-a-laboratory-freeze-dryer. Accessed 22 Jun 2023.

  111. Bogdanova, Fureby AM, Kocherbitov V. Influence of cooling rate on ice crystallization and melting in sucrose-water system. J Pharm Sci. 2022;111:2030–7. https://doi.org/10.1016/J.XPHS.2022.01.027.

  112. The importance of critical temperatures in the freeze drying of pharmaceutical products. https://www.pharmaceuticalonline.com/doc/importance-criticaltemperatures-freeze-drying-0002. Accessed 22 Jun 2023.

  113. Depaz RA, Pansare S, Patel SM. Freeze-drying above the glass transition temperature in amorphous protein formulations while maintaining product quality and improving process efficiency. J Pharm Sci. 2016;105:40–9. https://doi.org/10.1002/JPS.24705.

    Article  CAS  PubMed  Google Scholar 

  114. Palmkron SB, Gustafson L, Wahlgren M, Bergensthål B, Fureby AM. Temperature and heat transfer control during freeze drying. effect of vial holders and influence of pressure. Pharm Res. 2022;39:2597–606. https://doi.org/10.1007/S11095-022-03353-4/FIGURES/9.

  115. Levenspiel O. The three mechanisms of heat transfer: conduction. convection and radiation. the three mechanisms of heat transfer: conduction, convection, and radiation. in: engineering flow and heat exchange. In: The Plenum Chemical Engineering Series. Springer, Boston. MA; 1984.

    Google Scholar 

  116. Jameel F, Alexeenko A, Bhambhani A, Sacha G, Zhu T, Tchessalov S, Kumar L, Sharma P, Moussa E, Iyer L, Fang R, Srinivasan J, Tharp T, Azzarella J, Kazarin P, Jalal M. Recommended best practices for lyophilization validation-2021 part I: process design and modeling. AAPS PharmSciTech. 2021;22(7):221. https://doi.org/10.1208/s12249-021-02086-8.

    Article  PubMed  Google Scholar 

  117. Alba-Simionesco C, Judeinstein P, Longeville S, Osta O, Porcher F, Caupin F, Tarjus G. Interplay of vitrification and ice formation in a cryoprotectantaqueous solution at low temperature. PNAS. 2022;119(12):e2112248119. https://doi.org/10.1073/pnas.2112248119.

  118. Steven D Flemming. Cryoprotectants. https://fertility.coopersurgical.com/cryoprotectants/.

  119. Hauptmann A, Hoelzl G, Loerting T. Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants. Eur J Pharm Biopharm. 2021;163:127–40. https://doi.org/10.1016/j.ejpb.2021.03.015.

    Article  CAS  PubMed  Google Scholar 

  120. Luo C, Liu Z, Mi S, Li L. Quantitative investigation on the effects of ice crystal size on freeze-drying: the primary drying step. Drying Technol. 2022;40(2):446–58. https://doi.org/10.1080/07373937.2020.1806865.

  121. Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z, Zhan X, Tan S. A review of the material characteristics, antifreeze mechanisms, and applications of cryoprotectants (CPAs). J Nanomater. 2021;(9990709):14. https://doi.org/10.1155/2021/9990709.

  122. Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci. 2023;14. https://doi.org/10.3389/fpls.2023.1246093.

  123. Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The role of cryoprotective agents in liposome stabilization and preservation. Int J Mol Sci. 2022;23(20):12487. https://doi.org/10.3390/ijms232012487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8. https://doi.org/10.1016/j.imr.2016.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98(12). https://doi.org/10.1002/jps.

  126. Jang K, Kim HG, Hlaing SHS, Kang M, Choe H-W, Kim YJ. A short review on cryoprotectants for 3D protein structure analysis. Crystals. 2022;12:138. https://doi.org/10.3390/cryst12020138.

    Article  CAS  Google Scholar 

  127. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021;30:963689721999617. https://doi.org/10.1177/0963689721999617.

  128. Pegg DE. Principles of cryopreservation. In: Day JG, Stacey GN, editors. Cryopreservation and freeze-drying protocols. Methods in molecular biology. US: Totowa (NJ: ): Humana Press; 2007. p. 39–75.

    Chapter  Google Scholar 

  129. Szurek EA, Eroglu A. Comparison and avoidance of toxicity of penetrating cryoprotectants. PLoS ONE. 2011;6(11):e27604. https://doi.org/10.1371/journal.pone.0027604.

  130. Best, Ben. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 2015;18. https://doi.org/10.1089/rej.2014.1656.

  131. Date PV, Samad A, Devarajan PV. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS Pharm Sci Tech. 2010;11(1). https://doi.org/10.1208/s12249-010-9382-3.

  132. Zhu S, Yu J, Liu S, Ding Y, Wang W, Zhou X. A bottom-up evaluation on cryoprotective potentials of gelatine from fish scale. Food Hydrocoll. 2022;124:107243. https://doi.org/10.1016/j.foodhyd.2021.107243.

  133. Cryopreservation of cells. https://www.usp.org/sites/default/files/usp/document/our-work/biologics/resources/gc-1044-cryopreservation-of-cells.pdf.

  134. Elbrink K, Van Hees S, Holm R, Kiekens F. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Int J Pharm. 2023;635:122717. https://doi.org/10.1016/j.ijpharm.2023.122717.

  135. Dalvi H, Bhat A, Iyer A, et al. Armamentarium of cryoprotectants in peptide vaccines: mechanistic insight, challenges, opportunities and future prospects. Int J Pept Res Ther. 2021;27:2965–82. https://doi.org/10.1007/s10989-021-10303-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dash SK, Patra CN, Acharjya SK, Jena GK, Panigrahi KC, Kumar NK, et al. Development and characterization of paliperidone loaded nanostructured lipid carrier. Indian J Pharm Edu Res. 2022;56:1003–12. https://doi.org/10.5530/ijper.56.4.181.

    Article  CAS  Google Scholar 

  137. Bhattacharya S. Cryoprotectants and their usage in cryopreservation process. https://doi.org/10.5772/intechopen.80477.

  138. Das A. Impact of continuous processing techniques on biologics supply chains. In: Continuous processing in pharmaceutical manufacturing. 2014. p. 53–70. https://doi.org/10.1002/9783527673681.ch03.

    Chapter  Google Scholar 

  139. Plumb K. Continuous processing in the pharmaceutical industry: changing the mind set. Chem Eng Res Des. 2005;83(6):730–8. https://doi.org/10.1205/cherd.04359.

    Article  CAS  Google Scholar 

  140. Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci. 2021;231:116272. https://doi.org/10.1016/j.ces.2020.116272.

  141. Kommineni N, Butreddy A, Jyothi VG, Angsantikul P. Freeze drying for the preservation of immunoengineering products. Iscience. 2022.

  142. Hsein H, Auffray J, Noel T, Tchoreloff P. Recent advances and persistent challenges in the design of freeze-drying process for monoclonal antibodies. Pharm Dev Technol. 2022;27(9):942–55. https://doi.org/10.1080/10837450.2022.2131818.

    Article  CAS  PubMed  Google Scholar 

  143. Aguilera JM, Flink JM. A combined experiment-computer technique for determining heating programs for batch and continuous freeze dryers. Int J Food Sci Technol. 1974;9(3):329–44. https://doi.org/10.1111/j.1365-2621.1974.tb01780.x.

    Article  Google Scholar 

  144. Gamiz AG, Van Bockstal PJ, De Meester S, De Beer T, Corver J, Dewulf J. Analysis of a pharmaceutical batch freeze dryer: resource consumption, hotspots, and factors for potential improvement. Dry Technol. 2019. https://doi.org/10.1080/07373937.2018.1518916.

    Article  Google Scholar 

  145. Oetjen GW. Industrial freeze-drying for pharmaceutical applications. Drugs Pharm Sci. 1999;96:267–335.

  146. Kharaghani A, Tsotsas E, Wolf C, Beutler T, Guttzeit M, Oetjen GW. Freeze-drying Ullmann’s encycl ind chem. 2000;15:1–47.

    Google Scholar 

  147. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90(7):860–71. https://doi.org/10.1002/jps.1039.

    Article  CAS  PubMed  Google Scholar 

  148. Oddone I, Van Bockstal PJ, De Beer T, Pisano R. Impact of vacuum-induced surface freezing on inter-and intra-vial heterogeneity. Eur J Pharm Biopharm. 2016;103:167–78. https://doi.org/10.1016/j.ejpb.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  149. Peters BH, Staels L, Rantanen J, Molnár F, De Beer T, Lehto VP, et al. Effects of cooling rate in microscale and pilot scale freeze-drying–variations in excipient polymorphs and protein secondary structure. Eur J Pharm Sci. 2016;95:72–81. https://doi.org/10.1016/j.ejps.2016.05.020.

    Article  CAS  PubMed  Google Scholar 

  150. Arsiccio A, Barresi A, De Beer T, Oddone I, Van Bockstal PJ, Pisano R. Vacuum induced surface freezing as an effective method for improved inter-and intra-vial product homogeneity. Eur J Pharm Biopharm. 2018;128:210–9. https://doi.org/10.1016/j.ejpb.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  151. Kramer M, Sennhenn B, Lee G. Freeze-drying using vacuum-induced surface freezing. J Pharm Sci. 2002;91(2):433–43. https://doi.org/10.1002/jps.10035.

    Article  CAS  PubMed  Google Scholar 

  152. Patel SM, Bhugra C, Pikal MJ. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying. AAPS PharmSciTech. 2009;10:1406–11. https://doi.org/10.1208/s12249-009-9338-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bursac R, Sever R, Hunek B. A practical method for resolving the nucleation problem in lyophilization. Bio Process Int. 2009;7(9):66–72.

    CAS  Google Scholar 

  154. Pisano R, Arsiccio A, Nakagawa K, Barresi AA. Tuning, measurement and prediction of the impact of freezing on product morphology: a step toward improved design of freeze-drying cycles. Dry Technol. 2019;37(5):579–99. https://doi.org/10.1080/07373937.2018.1528451.

    Article  CAS  Google Scholar 

  155. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;73(9):1224–37. https://doi.org/10.1002/jps.2600730910.

    Article  CAS  PubMed  Google Scholar 

  156. Pikal MJ, Bogner R, Mudhivarthi V, Sharma P, Sane P. Freeze-drying process development and scale-up: scale-up of edge vial versus center vial heat transfer coefficients. Kv J Pharm Sci. 2016;105(11):3333–43. https://doi.org/10.1016/j.xphs.2016.07.027.

    Article  CAS  PubMed  Google Scholar 

  157. Rasetto V, Marchisio DL, Fissore D, Barresi AA. On the use of a dual-scale model to improve understanding of a pharmaceutical freeze-drying process. J Pharm Sci. 2010;99(10):4337–50. https://doi.org/10.1002/jps.22127.

    Article  CAS  PubMed  Google Scholar 

  158. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25:781–91. https://doi.org/10.1007/s11095-007-9511-1.

    Article  CAS  PubMed  Google Scholar 

  159. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J. Understanding pharmaceutical quality by design. AAPS J. 2014;16:771–83. https://doi.org/10.1208/s12248-014-9598-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fissore D, Pisano R, Barresi AA. Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process. J Pharm Sci. 2011;100(11):4922–33. https://doi.org/10.1002/jps.22668.

    Article  CAS  PubMed  Google Scholar 

  161. Pisano R, Fissore D, Barresi AA, Rastelli M. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry. AAPS PharmSciTech. 2013;14:1137–49. https://doi.org/10.1208/s12249-013-0003-9.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Rambhatla S, Tchessalov S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests. AAPS PharmSciTech. 2006;7:E61–70.

  163. Fissore D, Pisano R, Barresi AA. Monitoring of the secondary drying in freeze-drying of pharmaceuticals. J Pharm Sci. 2011;100(2):732–42. https://doi.org/10.1002/jps.22311.

    Article  CAS  PubMed  Google Scholar 

  164. De Beer TR, Vercruysse P, Burggraeve A, Quinten T, Ouyang J, Zhang X, Vervaet C, Remon JP, Baeyens WR. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. J Pharm Sci. 2009;98(9):3430–46. https://doi.org/10.1002/jps.21633.

    Article  CAS  PubMed  Google Scholar 

  165. Oddone I, Fulginiti D, Barresi AA, Grassini S, Pisano R. Non-invasive temperature monitoring in freeze drying: control of freezing as a case study. Dry Technol. 2015;33(13):1621–30. https://doi.org/10.1080/07373937.2015.1040026.

    Article  Google Scholar 

  166. Nakagawa K, Hottot A, Vessot S, Andrieu J. Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying. Chem. Eng. Process.: Process Intensif. 2006;45(9):783–91. https://doi.org/10.1016/j.cep.2006.03.007

  167. Harper JC, Tappel AL. Freeze-drying of food products. Adv Food Nutr Res. 1957;7:171–234. https://doi.org/10.1016/S0065-2628(08)60249-9.

    Article  CAS  Google Scholar 

  168. Sluder JC, Olsen RW, Kenyon EM. A method for the production of dry powdered orange juice. Food Tech. 1947;1(1):85–94.

    Google Scholar 

  169. Oetjen GW, Haseley P. Freeze-drying. John Wiley & Sons; 2004.

    Google Scholar 

  170. Gea web page. 2017. https://www.gea.com/en/products/dryers-particle-processing/freeze-dryers/conrad-freeze-dryer.jsp. Accessed 26 Oct 2017.

  171. Rey L. Glimpses into the realm of freeze-drying: classical issues and new ventures. In: Freeze drying/lyophilization of pharmaceutical and biological products. London: Informa Healthcare; 2010. p. 1–28.

    Google Scholar 

  172. Touzet A, Pfefferlé F, van der Wel P, Lamprecht A, Pellequer Y. Active freeze drying for production of nanocrystal-based powder: a pilot study. Int J Pharm. 2018;536(1):222–30. https://doi.org/10.1016/j.ijpharm.2017.11.050.

    Article  CAS  PubMed  Google Scholar 

  173. Saini R, Kaur S, Aggarwal P, Dhiman A, Suthar P. Conventional and emerging innovative processing technologies for quality processing of potato and potato-based products: a review. Food Control. 2023:109933. https://doi.org/10.1016/j.foodcont.2023.109933.

  174. Pisano R, Arsiccio A, Capozzi LC, Trout BL. Achieving continuous manufacturing in lyophilization: technologies and approaches. Eur J Pharm Biopharm. 2019;142:265–79. https://doi.org/10.1016/j.ejpb.2019.06.027.

    Article  CAS  PubMed  Google Scholar 

  175. Kullmann D, Martinez CL, Lümkemann J, Huwyler J. Part I: significant reduction of lyophilization process times by using novel matrix-based scaffolds Eur J Pharm Biopharm. 2023;184:248–61. https://doi.org/10.1016/j.ejpb.2022.12.008.

  176. Howard MD, Lu X, Jay M, Dziubla TD. Optimization of the lyophilization process for long-term stability of solid–lipid nanoparticles. Drug Dev Ind Pharm. 2012;38(10):1270–9. https://doi.org/10.3109/03639045.2011.645835.

    Article  CAS  PubMed  Google Scholar 

  177. Zothanpuii F, Rajesh R, Selvakumar KJ. A review on stability testing guidelines of pharmaceutical products. Asian J Pharm Clin Res. 2020;13(10):3–9.

    CAS  Google Scholar 

  178. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. https://doi.org/10.1016/j.addr.2006.09.017.

  179. Emami F, Keihan Shokooh M, Mostafavi Yazdi SJ. Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals. J Pharm Investig. 2023;53(1):35–57. https://doi.org/10.1007/s40005-022-00610-x.

    Article  CAS  PubMed  Google Scholar 

  180. Trenkenschuh E, Friess W. Freeze-drying of nanoparticles, how to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm. 2021;165:345–60. https://doi.org/10.1016/j.ejpb.2021.05.024.

  181. Assefi M, Ataeinaeini M, Nazari A, Gholipour A, Vertiz-Osores JJ, Calla-Vásquez KM, Al-Naqeeb BZ, Jassim KH, Kalajahi HG, Yasamineh S, Dadashpour M, A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system. J Drug Deliv Sci Technol. 2023:104623. https://doi.org/10.1016/j.jddst.2023.104623.

  182. Ciurzynska A, Lenart A. Freeze-drying-application in food processing and biotechnology-a review. Pol J Food Nutri Sci. 2021;61. https://doi.org/10.2478/v10222-011-0017-5.

  183. Barman RK, Iwao Y, Islam MR, Funakoshi Y, Noguchi S, Wahed MI, Itai S, In vivo pharmacokinetic and hemocompatible evaluation of lyophilization induced nifedipine solid-lipid nanoparticle. Pharmacol Pharma. 2014; 455–61. https://doi.org/10.4236/pp.2014.55055.

  184. Amekyeh H, Billa N. Lyophilized drug-loaded solid lipid nanoparticles formulated with beeswax and theobroma oi. Molecules. 2021;26:908. https://doi.org/10.3390/molecules26040908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang JL, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, et al. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm. 2021;596: 120215. https://doi.org/10.1016/j.ijpharm.2021.120215.

    Article  CAS  PubMed  Google Scholar 

  186. Ai L, Li Y, Zhou L, Yao W, Zhang H, Hu Z et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov. 2023;9. https://doi.org/10.1038/s41421-022-00517-9.

  187. Sanka K, Suda D, Bakshi V. Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design. J Drug Deliv Sci Technol. 2016;33:114–24. https://doi.org/10.1016/j.jddst.2016.04.003.

    Article  CAS  Google Scholar 

  188. Seo YG, Kim DW, Yousaf AM, Park JH, Chang PS, Baek HH, et al. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterization and pharmacokinetics. J Microencapsul. 2015;32:503–10. https://doi.org/10.3109/02652048.2015.1057252.

    Article  CAS  PubMed  Google Scholar 

  189. Tashish AY, Shahba AA, Alanazi FK, Kazi M. Adsorbent precoating by lyophilization: a novel green solvent technique to enhance cinnarizine release from solid self-nanoemulsifying drug delivery systems (S-SNEDDS). Pharmaceutics. 2022;15:134. https://doi.org/10.3390/pharmaceutics15010134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kuncahyo I, Choiri S, Fudholi A. Solidification of meloxicam self-nano emulsifying drug delivery system formulation incorporated into soluble and insoluble carriers using freeze drying method. IOP Conf Ser Mater Sci Eng. 2019;578:012051.

  191. Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnol. 2021;15:19–27. https://doi.org/10.1049/nbt2.12018.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Wang G, Wang JJ, Chen XL, Du L, Li F. Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo. J Controlled Rel. 2016;235:276–90. https://doi.org/10.1016/j.jconrel.2016.05.045.

    Article  CAS  Google Scholar 

  193. Yu Y, Chen D, Li Y, Yang W, Tu J, Shen Y. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Delivery. 2018;25:888–99. https://doi.org/10.1080/10717544.2018.1458923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gao W, Hu CM, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B. 2013;48:6569–85.

    Article  Google Scholar 

  195. Franze S, Selmin F, Samaritani E, Minghetti P, Cilurzo F. Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics. 2018;10:139. https://doi.org/10.3390/pharmaceutics10030139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, et al. Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. In J Mol Sci. 2013;14:19763–73. https://doi.org/10.3390/ijms141019763.

    Article  CAS  Google Scholar 

  197. Chen X, Long Q, Zhu L, Lu LX, Sun LN, Pan L, et al. A double-switch temperature-sensitive controlled release antioxidant film embedded with lyophilized nanoliposomes encapsulating rosemary essential oils for solid food. Mater. 2019;12:4011. https://doi.org/10.3390/ma12234011.

    Article  CAS  Google Scholar 

  198. Shokri M, Tavallaie M, Hosseini SM. Effect of lyophilization on the size and polydispersity of unilamellar and multilamellar liposomes. J Nanotechnol Mater Sci. 2016;3:37–40. https://doi.org/10.15436/2377-1372.16.1139.

  199. Li C, Deng Y. A novel method for the preparation of liposomes: freeze drying of monophase solutions. J Pharm Sci. 2004;93:1403–14. https://doi.org/10.1002/jps.20055.

    Article  CAS  PubMed  Google Scholar 

  200. Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab J Chem. 2012;5:397–417. https://doi.org/10.1016/j.arabjc.2010.09.027.

    Article  CAS  Google Scholar 

  201. Rochelle do Vale Morais Morais A, Xavier-Jr FH, do Nascimento Alencar E, Melo de Oliveira C, Dantas Santos N, Antonio Silva-JA, Optimization of the freeze-drying process for microemulsion systems. Drying Technol. 2019;37:1745–56.

  202. Moreno MA, Frutos P, Ballesteros MP. Lyophilized lecithin-based oil-water microemulsions as a new and low toxic delivery system for amphotericin B. Pharm Res. 2001;18:344–51. https://doi.org/10.1023/a:1011011215418.

    Article  CAS  PubMed  Google Scholar 

  203. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123–7. https://doi.org/10.1007/s13205-014-0214-0.

  204. do Vale Morais AR, do Nascimento Alencar É, Júnior FH, De Oliveira CM, Marcelino HR, Barratt G, Fessi H, Do Egito ES, Elaissari A. Freeze-drying of emulsified systems: a review. Int J Pharm. 2016;503:102–14. https://doi.org/10.1016/j.ijpharm.2016.02.047.

  205. Li F, Wang T, He HB, Tang X. The properties of bufadienolides-loaded nano-emulsion and submicro-emulsion during lyophilization. Int J Pharm. 2008; 349 : 291–9.https://doi.org/10.1016/j.ijpharm.2007.08.011.

  206. Kumar S, Gogoi AS, Shukla S, Trivedi M, Gulati S. Conclusion and future prospects of chitosan-based nanocomposites. In: Chitosan-based nanocomposite materials: fabrication, characterization and biomedical applications. Singapore: Springer Nature Singapore; 2022. p. 305–41.

    Chapter  Google Scholar 

  207. Marciello M, Rossi S, Caramella C, Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polyms. 2017;170:43–51. https://doi.org/10.1016/j.carbpol.2017.04.051.

  208. Ataide JA, Geraldes DC, Gerios EF, Bissaco FM, Cefali LC, Oliveira-Nascimento L, et al. Freeze-dried chitosan nanoparticles to stabilize and deliver bromelain. J Drug Deliv Sci Technol. 2021;61:102225. https://doi.org/10.1016/j.jddst.2020.102225.

  209. Diop M, Auberval N, Viciglio A, Langlois A, Bietiger W, Mura C, et al. Design, characterization, and bioefficiency of insulin–chitosan nanoparticles after stabilization by freeze-drying or cross-linking. Int J Pharm. 2015;491:402–8. https://doi.org/10.1016/j.ijpharm.2015.05.065.

    Article  CAS  PubMed  Google Scholar 

  210. Mahdavi Z, Rezvani H, Moraveji MK. Core–shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 2020;10:18280–95. https://doi.org/10.1039/D0RA01032D.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Layre AM, Couvreur P, Richard J, Requier D, Eddine Ghermani N, Gref R. Freeze-drying of composite core-shell nanoparticles. Drug Devel Ind Pharm. 2006;32:839–46. https://doi.org/10.1080/03639040600685134.

    Article  CAS  Google Scholar 

  212. Dhadde GS, Mali HS, Raut ID, Nitalikar MM, Bhutkar MA. A review on microspheres: types, method of preparation, characterization and application. Asian J Pharm Technol. 2021;11:149–55. https://doi.org/10.52711/2231-5713.2021.00025.

  213. Pop OL, Diaconeasa Z, Brandau T, Ciuzan O, Pamfil D, Vodnar DC, et al. Effect of glycerol, as cryoprotectant in the encapsulation and freeze drying of microspheres containing probiotic cells, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci Technol. 2015;72:27–32. https://doi.org/10.15835/buasvmcn-fst:10993.

  214. Ma X, Santiago N, Chen YS, Chaudhary K, Milstein SJ, Baughman RA. Stability study of drug-loaded proteinoid microsphere formulations during freeze-drying. J Drug Target. 1994;2:9–21. https://doi.org/10.3109/10611869409015889.

    Article  CAS  PubMed  Google Scholar 

  215. Song W, Xu J, Gao L, Zhang Q, Tong J, Ren L. Preparation of freeze-dried porous chitosan microspheres for the removal of hexavalent chromium. Appl Sci. 2021;11:4217. https://doi.org/10.3390/app11094217.

  216. Erdogar N, Akkın S, Bilensoy E. Nanocapsules for drug delivery: an updated review of the last decade. Recent Patent Drug Deliv Form. 2018;12:252–66. https://doi.org/10.2174/1872211313666190123153711.

    Article  CAS  Google Scholar 

  217. Ohgaki K, Khanh NQ, Joden Y, Tsuji A, Nakagawa T. Physicochemical approach to nanobubble solutions. Chemical Eng Sci. 2010;65:1296–300. https://doi.org/10.1016/j.ces.2009.10.003.

    Article  CAS  Google Scholar 

  218. Snell JR, Kumar NK, Suryanarayanan R, Randolph TW. Nanobubbles in reconstituted lyophilized formulations: interaction with proteins and mechanism of formation. J Pharm Sci. 2020;109:284–92. https://doi.org/10.1016/j.xphs.2019.05.005.

    Article  CAS  PubMed  Google Scholar 

  219. Kida H, Yamasaki Y, Feril LB Jr, Endo H, Itaka K, Tachibana K. Efficient mRNA delivery with lyophilized human serum albumin-based nanobubbles. Nanomater. 2023;13:1283. https://doi.org/10.3390/nano13071283.

    Article  CAS  Google Scholar 

  220. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Rel. 2012;161:505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  CAS  Google Scholar 

  221. Abrego G, Alvarado HL, Egea MA, Gonzalez-Mira E, Calpena AC, Garcia ML. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen. J Pharm Sci. 2014;103:3153–64. https://doi.org/10.1002/jps.24101.

    Article  CAS  PubMed  Google Scholar 

  222. Parra A, Mallandrich M, Clares B, Egea MA, Espina M, García ML, et al. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: ocular anti-inflammatory applications. Colloids Surf B. 2015;136:935–43. https://doi.org/10.1016/j.colsurfb.2015.10.026.

  223. Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insight. 2017;117739280700200002. https://doi.org/10.1177/117739280700200002.

  224. Curci A, Keller BL, Reul R, Moschwitzer J, Fricker G. Development and lyophilization of itraconazole loaded poly (butyl cyanoacrylate) nanospheres as a drug delivery system. Eur Pharm Sci. 2015;78:121–31. https://doi.org/10.1016/j.ejps.2015.07.010.

    Article  CAS  Google Scholar 

  225. Norizan MN, Moklis MH, Demon SZ, Halim NA, Samsuri A, Mohamad IS, et al. Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv. 2020;10:43704–32. https://doi.org/10.1039/D0RA09438B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sweetman LJ, Moulton SE, Wallace GG. Characterisation of porous freeze dried conducting carbon nanotube–chitosan scaffolds. J Mater Chem. 2018;18:5417–22.

    Article  Google Scholar 

  227. Hwa Y, Seo HK, Yuk JM, Cairns EJ. Freeze-dried sulfur–graphene oxide–carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells. Nano lett. 2017;17:7086–94. https://doi.org/10.1021/acs.nanolett.7b03831.

    Article  CAS  PubMed  Google Scholar 

  228. Anoshkin IV, Campion J, Lioubtchenko DV, Oberhammer J. Freeze-dried carbon nanotube aerogels for high-frequency absorber applications. ACS Appl Mater Interf. 2018;10:19806–11. https://doi.org/10.1021/acsami.8b03983.

    Article  CAS  Google Scholar 

  229. He D, Mu S, Pan M. Improved carbon nanotube supported Pt nanocatalysts with lyophilization. Int J Hydrogen Energy. 2012;37:4699–703. https://doi.org/10.1016/j.ijhydene.2011.04.117.

    Article  CAS  Google Scholar 

  230. Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7:753–63. https://doi.org/10.1517/17425241003777010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hamaly MA, Abulateefeh SR, Al-Qaoud KM, Alkilany AM. Freeze-drying of monoclonal antibody-conjugated gold nanorods: colloidal stability and biological activity. Int J Pharm. 2018;550:269–77. https://doi.org/10.1016/j.ijpharm.2018.08.045.

    Article  CAS  PubMed  Google Scholar 

  232. Filipic B, Pantelic I, Nikolic I, Majhen D, Stoiic-Vukanic Z, Savic S, et al. Nanoparticle-based adjuvants and delivery systems for modern vaccines. Vaccines. 2023;11:1172. https://doi.org/10.3390/vaccines11071172.

  233. Trenkenschuh E, Friess W. Freeze-thaw stability of aluminum oxide nanoparticles. Int J Pharm. 2021;606:120932. https://doi.org/10.1016/j.ijpharm.2021.120932.

  234. Nayl AA, Abd-Elhamid AI, Aly AA, Brase S. Recent progress in the applications of silica-based nanoparticles. RSC Adv. 2022;12:13706–26. https://doi.org/10.1039/D2RA01587K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Picco AS, Ferreira LF, Liberato MS, Mondo GB, Cardoso MB. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications. Nanomed. 2018;13:179–90. https://doi.org/10.2217/nnm-2017-0280.

    Article  CAS  Google Scholar 

  236. Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid–polymer hybrid nanoparticles. Int J Pharm. 2012;424:98–106. https://doi.org/10.1016/j.ijpharm.2011.12.045.

    Article  CAS  PubMed  Google Scholar 

  237. Ngamcherdtrakul W, Sangvanich T, Reda M, Gu S, Bejan D, Yantasee W. Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. Int J Nanomed 2018;4015–27.

  238. Anhorn MG, Mahler HC, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9. https://doi.org/10.1016/j.ijpharm.2008.07.004.

    Article  CAS  PubMed  Google Scholar 

  239. Dadparvar M, Wagner S, Wien S, Worek F, von Briesen H, Kreuter J. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability. Eur J Pharm Biopharm. 2014;88:510–7. https://doi.org/10.1016/j.ejpb.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  240. Frank KJ, Boeck G. Development of a nanosuspension for iv administration: from miniscale screening to a freeze-dried formulation. Eur J Pharm Sci. 2016;87:112–7. https://doi.org/10.1016/j.ejps.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  241. Zhang T, Li X, Xu J, Shao J, Ding M, Shi S. Preparation, characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics. 2022;14:923. https://doi.org/10.3390/pharmaceutics14050923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ansari MT, Hussain A, Nadeem S, Majeed H, Saeed-Ul-Hassan S, Tariq I, et al. Preparation and characterization of solid dispersions of artemether by freeze-dried method. BioMed Res Int. 2015. https://doi.org/10.1155/2015/109563.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Mahjub R, Radmehr M, Dorkoosh FA, Ostad SN, Rafiee-Tehrani M. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Drug Develop Ind Pharm. 2014;40:1645–59. https://doi.org/10.3109/03639045.2013.841187.

    Article  CAS  Google Scholar 

  244. Gutierrez-Gonzalez CF, Agouram S, Torrecillas R, Moya JS, Lopez-Esteban S. Ceramic/metal nanocomposites by lyophilization: processing and HRTEM study. Mater Res Bullet. 2012;47:285–9. https://doi.org/10.1016/j.materresbull.2011.11.027.

    Article  CAS  Google Scholar 

  245. Gol D, Thakkar S, Misra M. Nanocrystal-based drug delivery system of risperidone: lyophilization and characterization. Drug Delop Ind Pharm. 2018;44:1458–66. https://doi.org/10.1080/03639045.2018.1460377.

    Article  CAS  Google Scholar 

  246. Le HV, Dulong V, Picton L, Le Cerf D. Lyophilization for formulation optimization of drug-loaded thermoresponsive polyelectrolyte complex nanogels from functionalized hyaluronic acid. Pharmaceutics. 2023;15:929. https://doi.org/10.3390/pharmaceutics15030929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Chua A, Tran TT, Pu S, Park JW, Hadinoto K. Lyophilization of curcumin–albumin nanoplex with sucrose as cryoprotectant: aqueous reconstitution, dissolution, kinetic solubility, and physicochemical stability. Int J Mol R Sci. 2022;23:11731. https://doi.org/10.3390/ijms231911731.

    Article  CAS  Google Scholar 

  248. Gomez L, Cebrian V, Martin-Saavedra F, Arruebo M, Vilaboa N, Santamaria J. Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization. Mater Res Bull. 2013;48:4051–7. https://doi.org/10.1016/j.materresbull.2013.06.034.

  249. Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Develop Technol. 2016;21:706–15. https://doi.org/10.3109/10837450.2015.1048553.

  250. Mohammady M, Yousefi G. Freeze-drying of pharmaceutical and nutraceutical nanoparticles: the effects of formulation and technique parameters on nanoparticles characteristics. J Pharm Sci. 2020;109:3235–47. https://doi.org/10.1016/j.xphs.2020.07.015.

    Article  CAS  PubMed  Google Scholar 

  251. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Controlled Rel. 2016;225:75–86. https://doi.org/10.1016/j.jconrel.2016.01.034.

    Article  CAS  Google Scholar 

  252. Nireesha GR, Divya L, Sowmya C, Venkateshan NN, Lavakumar V. Lyophilization/freeze drying-an review. Int J Novel Trend Pharm Sci. 2013;3:87–98. https://scienztech.org/index.php/ijntps/article/view/96.

  253. European pharmaceutical review. https://www.europeanpharmaceuticalreview.com/article/70823/continuous-controlled-pharmaceutical-freeze-drying-technology-unit-doses/. Accessed 4 Oct 2023.

  254. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58. https://doi.org/10.1007/s11095-008-9800-3.

    Article  CAS  PubMed  Google Scholar 

  255. Jakubowska E, Lulek J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions–a review. J Drug Deliv Sci Technol. 2021;62:102357. https://doi.org/10.1016/j.jddst.2021.102357.

  256. Ledet GA, Graves RA, Bostanian LA, Mandal TK. Spray-drying of biopharmaceuticals, Lyophilized biologics and vaccines: modality-based approaches. 2015;273–97.

  257. Dontireddy R, Crean AM. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions. Drug Devel Ind Pharm. 2011;37:1141–9. https://doi.org/10.3109/03639045.2011.562213.

    Article  CAS  Google Scholar 

  258. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:132. https://doi.org/10.3390/pharmaceutics11030132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gomez M, Archer M, Barona D, Wang H, Ordoubadi M, Karim SB. Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. Eur J Pharm Biopharm. 2021;163:23–37. https://doi.org/10.1016/j.ejpb.2021.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Barbosa J, Borges S, Amorim M, Pereira MJ, Oliveira A, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. J Funct Foods. 2015;17:340–51. https://doi.org/10.1016/j.jff.2015.06.001.

    Article  CAS  Google Scholar 

  261. Nail SL, Jiang S, Chongprasert S, Knopp SA. Fundamentals of freeze-drying, development and manufacture of protein. Pharm. 2002;281–360. https://doi.org/10.1007/978-1-4615-0549-5_6.

  262. Challener C. For lyophilization, excipients really do matter. BioPharm Int. 2017;30(1):32–5.

    Google Scholar 

  263. Emami F, Vatanara A, Park EJ, Na DH. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10:131. https://doi.org/10.3390/2Fpharmaceutics10030131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Esposito S. Traditional sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Mater. 2019;12:668. https://doi.org/10.3390/ma12040668.

  265. Rajan M, Dharman G, Sumathra M. Development of microwave absorbers from biopolymer composites. In: Biopolymer composites in electronics. Elsevier; 2017. p. 231–53. https://doi.org/10.1016/B978-0-12-809261-3.00008-5.

    Chapter  Google Scholar 

  266. Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Freeze-drying: a relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. In: Advances in food and nutrition research. Academic Press; 2020. p. 1–58. https://doi.org/10.1016/bs.afnr.2020.04.001.

    Chapter  Google Scholar 

  267. Luo WC, Beringhs AO, Kim R, Zhang W, Patel SM, Bogner RH, et al. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur J Pharm Biopharm. 2021;169:256–67. https://doi.org/10.1016/j.ejpb.2021.10.014.

    Article  CAS  PubMed  Google Scholar 

  268. Wang Y, Grainger DW. Lyophilized liposome-based parenteral drug development: reviewing complex product design strategies and current regulatory environments. Adv Drug Deliv Rev. 2019;151:56–71. https://doi.org/10.1016/j.addr.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  269. Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems, characterization and biology of nanomaterials for drug delivery. 2019;47–76. https://doi.org/10.1016/B978-0-12-814031-4.00003-9.

  270. Kumar N, Nautiyal U. A review article on lyophilization techniques used in pharmaceutical manufacturing. Int J Pharm Med Res J. 2017;5:478–84. www.ijpmr.org. Accessed 22 Jun 2023.

  271. Lyophilization of parenteral. https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/lyophilization-parenteral-793. Accessed 11 Nov 2014.

  272. Bhambhani A, Jeffrey TB. Lyophilization strategies for development of a high-concentration monoclonal antibody formulation: benefits and pitfalls. Am Pharm Rev. 2010. https://www.americanpharmaceuticalreview.com/Featured-Articles/117600-Lyophilization-Strategies-for-Development-of-a-High-Concentration-Monoclonal-Antibody-Formulation-Benefits-and-Pitfalls/.

  273. Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res. 2001;18:1345–53. https://doi.org/10.1023/A:1013054431517.

    Article  CAS  PubMed  Google Scholar 

  274. Ciurzynska A, Lenart A. Freeze-drying-application in food processing and biotechnology-a review. Polish J Food Nutr Sci. 2011;61(3).

  275. Freeze drying/lyophilization market - Global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/freeze-drying-lyophilization-equipment-market-24018886.html.

Download references

Acknowledgements

The authors would like to thank the DST-SERB, Government of India, for providing us the research support. The authors of the present article would like to express their sincere gratitude to the Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, and Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, for their kind support.

Funding

The authors gratefully acknowledge the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (File no. EEQ/2022/000008), in the preparation of the review article.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to Dalapathi Gugulothu.

Ethics declarations

Ethics approval

NA.

Consent for publication

All authors have approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Dash, S.K., Dhawan, D. et al. Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems. Drug Deliv. and Transl. Res. 14, 1111–1153 (2024). https://doi.org/10.1007/s13346-023-01477-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01477-7

Keywords

Navigation