Skip to main content

Advertisement

Log in

Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from reference [36]

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Watts G. WHO launches campaign to make drugs safer for children. BMJ 2007;335:1227. https://doi.org/10.1136/bmj.39423.581042.DB.

  2. WHO Technical Report Series, Development of paediatric medicines: points to consider in formulation, in: Tech. Reports No. 970, 2012: pp. 197–225.

  3. Qiu Y, He X, Zhu L, Chen B. Product and process development of solid oral dosage forms, in: Dev. Solid Oral Dos. Forms Pharm. Theory Pract. Second Ed., Academic Press, 2017: pp. 555–591. https://doi.org/10.1016/B978-0-12-802447-8.00020-0.

  4. Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives: I-Galenical development and quality attributes. J Control Release. 2015;206:1–19. https://doi.org/10.1016/j.jconrel.2015.03.006.

    Article  CAS  PubMed  Google Scholar 

  5. Liew KB, Tan YT, Peh KK. Characterization of oral disintegrating film containing donepezil for Alzheimer Disease, AAPS PharmSciTech. 2012;13:134. https://doi.org/10.1208/S12249-011-9729-4.

  6. Abdelbary A, Bendas ER, Ramadan AA, Mostafa DA. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride. AAPS PharmSciTech. 2014;15:1603–10. https://doi.org/10.1208/s12249-014-0186-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gerrard SE, Walsh J, Bowers N, Salunke S, Hershenson S. Hershenson, Innovations in pediatric drug formulations and administration technologies for low resource settings. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11100518.

  8. Belayneh A, Tadese E, Molla F. Safety and biopharmaceutical challenges of excipients in off-label pediatric formulations. Int J Gen Med. 2020;13:1051–66. https://doi.org/10.2147/IJGM.S280330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Riet-Nales DA, Kozarewicz P, Aylward B, de Vries R, Egberts TCG, Rademaker CMA, Schobben AFAM. Paediatric drug development and formulation design—a european perspective. AAPS PharmSciTech. 2017;18:241–9. https://doi.org/10.1208/s12249-016-0558-3.

    Article  CAS  PubMed  Google Scholar 

  10. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75:2–9. https://doi.org/10.1016/j.ejps.2015.02.015.

    Article  CAS  PubMed  Google Scholar 

  11. Van Riet-Nales DA, Schobben AFAM, Vromans H, Egberts TCG, Rademaker CMA. safe and effective pharmacotherapy in infants and preschool children: importance of formulation aspects. Arch Dis Child. 2016;101:662–9. https://doi.org/10.1136/archdischild-2015-308227.

    Article  PubMed  Google Scholar 

  12. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J. 2016;24:537–46. https://doi.org/10.1016/j.jsps.2015.02.024.

    Article  PubMed  Google Scholar 

  13. Karavasili C, Gkaragkounis A, Fatouros DG. Patent landscape of pediatric-friendly oral dosage forms and administration devices. Expert Opin Ther Pat. 2021;31:663–86. https://doi.org/10.1080/13543776.2021.1893691.

    Article  CAS  PubMed  Google Scholar 

  14. EMA. Guideline on pharmaceutical development of medicines for paediatric use. 2013.

  15. Harris D, Hermans E, Klein S, Wagner-Hattler L, Walsh J. Age-appropriate solid oral formulations for pediatric applications with a focus on multiparticulates and minitablets: summary of September 2019 EuPFI workshop. In: Eur J Pharm Biopharm., Eur J Pharm Biopharm. 2020; pp. 222–225. https://doi.org/10.1016/j.ejpb.2020.06.012.

  16. Klingmann V, Seitz A, Meissner T, Breitkreutz J, Moeltner A, Bosse HM. Acceptability of uncoated mini-tablets in neonates—a randomized controlled trial. J Pediatr. 2015;167:893-896.e2. https://doi.org/10.1016/j.jpeds.2015.07.010.

    Article  PubMed  Google Scholar 

  17. Klingmann V, Pohly CE, Meissner T, Mayatepek E, Möltner A, Flunkert K, Breitkreutz J, Bosse HM. Acceptability of an orodispersible film compared to syrup in neonates and infants: a randomized controlled trial. Eur J Pharm Biopharm. 2020;151:239–45. https://doi.org/10.1016/J.EJPB.2020.03.018.

    Article  CAS  PubMed  Google Scholar 

  18. Liang AC, Chen LIH. Fast-dissolving intraoral drug delivery systems. Expert Opin Ther Pat. 2001;11:981–6. https://doi.org/10.1517/13543776.11.6.981.

    Article  CAS  Google Scholar 

  19. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8:299–316. https://doi.org/10.1517/17425247.2011.553217.

    Article  CAS  PubMed  Google Scholar 

  20. WHO. Unedited Draft Annex To 46Th Report of the Who Expert Committee on specifications for pharmacetical preparations. 2020.

  21. Walsh J, Schaufelberger D, Iurian S, Klein S, Batchelor H, Turner R, Gizurarson S, Boltri L, Alessandrini E, Tuleu C. Path towards efficient paediatric formulation development based on partnering with clinical pharmacologists and clinicians, a conect4children expert group white paper. Br J Clin Pharmacol. 2021. https://doi.org/10.1111/bcp.14989.

    Article  PubMed  Google Scholar 

  22. Hoppu K. Time to change the paradigm of children’s medicines from liquid formulations to flexible solid oral dosage forms, Ceylon. Med J. 2016;61:93–5. https://doi.org/10.4038/cmj.v61i3.8340.

    Article  CAS  Google Scholar 

  23. O’Brien F, Clapham D, Krysiak K, Batchelor H, Field P, Caivano G, Pertile M, Nunn A, Tuleu C. Making medicines baby size: the challenges in bridging the formulation gap in neonatal medicine. Int J Mol Sci. 2019;20:2688. https://doi.org/10.3390/ijms20112688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Purswani MU, Radhakrishnan J, Irfan KR, Walter-Glickman C, Hagmann S, Neugebauer R. Infant acceptance of a bitter-tasting liquid medication: a randomized controlled trial comparing the rx medibottle with an oral syringe. Arch Pediatr Adolesc Med. 2009;163:186–8. https://doi.org/10.1001/archpediatrics.2008.541.

    Article  PubMed  Google Scholar 

  25. European Medicines Agency. Reflection paper: formulation of choice for the paediatric population. Eur Med Agency. EMEA/CHMP/. 2006;1–45.

  26. Mistry P, Batchelor H. Evidence of acceptability of oral paediatric medicines: a review. J Pharm Pharmacol. 2017;69:361–76. https://doi.org/10.1111/jphp.12610.

    Article  CAS  PubMed  Google Scholar 

  27. Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, Tuleu C. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14–33. https://doi.org/10.1016/j.addr.2014.02.012.

    Article  CAS  PubMed  Google Scholar 

  28. Asiri A, Hofmanová J, Batchelor H. A review of in vitro and in vivo methods and their correlations to assess mouthfeel of solid oral dosage forms. Drug Discov Today. 2021;26:740–53. https://doi.org/10.1016/j.drudis.2020.12.015.

    Article  CAS  PubMed  Google Scholar 

  29. Venables R, Stirling H, Batchelor H, Marriott J. Problems with oral formulations prescribed to children: a focus group study of healthcare professionals. Int J Clin Pharm. 2015;37:1057–67. https://doi.org/10.1007/s11096-015-0152-x.

    Article  PubMed  Google Scholar 

  30. Orlu M, Ranmal SR, Sheng Y, Tuleu C, Seddon P. Acceptability of orodispersible films for delivery of medicines to infants and preschool children. Drug Deliv. 2017;24:1243–8. https://doi.org/10.1080/10717544.2017.1370512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm. 2004;30:429–48. https://doi.org/10.1081/ddc-120037477.

    Article  CAS  PubMed  Google Scholar 

  32. Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol. 2015;79:395–404. https://doi.org/10.1111/bcp.12267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner-Bowker DM, An Haack K, Krohe M, Yaworsky A, Vivas N, Kelly M, Chatterjee G, Chaston E, Mann E, Reaney M. Development and content validation of the pediatric oral medicines acceptability questionnaires (P-OMAQ): patient-reported and caregiver-reported outcome measures. J Patient Rep Outcomes. 2020;4:80. https://doi.org/10.1186/s41687-020-00246-1.

  34. Gillis J, Loughlan P. Not just small adults: the metaphors of paediatrics. Arch Dis Child. 2007;92:946–7. https://doi.org/10.1136/adc.2007.121087.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized medicine in pediatrics: the clinical potential of orodispersible films. AAPS PharmSciTech. 2017;18:267–72. https://doi.org/10.1208/s12249-016-0515-1.

    Article  CAS  PubMed  Google Scholar 

  36. Gijsen M, Vlasselaers D, Spriet I, Allegaert K. Pharmacokinetics of antibiotics in pediatric intensive care: fostering variability to attain precision medicine. Antibiotics. 2021;10. https://doi.org/10.3390/antibiotics10101182.

  37. He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm. 2021;604:1–13. https://doi.org/10.1016/j.ijpharm.2021.120759.

    Article  CAS  Google Scholar 

  38. Krampe R, Visser JC, Frijlink HW, Breitkreutz J, Woerdenbag HJ, Preis M. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes. Expert Opin Drug Deliv. 2015;13:493–506. https://doi.org/10.1517/17425247.2016.1118048.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Li Y, Abed M, Davé RN. Incorporation of surface-modified dry micronized poorly water-soluble drug powders into polymer strip films. Int J Pharm. 2018;535:462–72. https://doi.org/10.1016/j.ijpharm.2017.11.040.

    Article  CAS  PubMed  Google Scholar 

  40. Woertz C, Kleinebudde P. Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. Int J Pharm. 2015;493:134–45. https://doi.org/10.1016/j.ijpharm.2015.07.032.

    Article  CAS  PubMed  Google Scholar 

  41. Beck C, Sievens-Figueroa L, Gärtner K, Jerez-Rozo JI, Romañach RJ, Bilgili E, Davé RN. Effects of stabilizers on particle redispersion and dissolution from polymer strip films containing liquid antisolvent precipitated griseofulvin particles. Powder Technol. 2013;236:37–51. https://doi.org/10.1016/j.powtec.2012.05.047.

    Article  CAS  Google Scholar 

  42. Steiner D, Finke JH, Kwade A. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill. Int J Pharm. 2016;511:804–13. https://doi.org/10.1016/J.IJPHARM.2016.07.058.

    Article  CAS  PubMed  Google Scholar 

  43. Khan S, Boateng JS, Mitchell J, Trivedi V. Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech. 2015;16:800–10. https://doi.org/10.1208/s12249-014-0268-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech. 2016;17:133–47. https://doi.org/10.1208/s12249-015-0425-7.

    Article  CAS  PubMed  Google Scholar 

  45. Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm. 2013;453:233–52. https://doi.org/10.1016/j.ijpharm.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  46. Ignatious F, Sun L, Lee CP, Baldoni J. Electrospun nanofibers in oral drug delivery. Pharm Res. 2010;27:576–88. https://doi.org/10.1007/s11095-010-0061-6.

    Article  CAS  PubMed  Google Scholar 

  47. Samprasit W, Akkaramongkolporn P, Kaomongkolgit R, Opanasopit P. Cyclodextrin-based oral dissolving films formulation of taste-masked meloxicam. Pharm Dev Technol. 2018;23:530–9. https://doi.org/10.1080/10837450.2017.1401636.

    Article  CAS  PubMed  Google Scholar 

  48. Sowade E, Mitra KY, Ramon E, Martinez-Domingo C, Villani F, Loffredo F, Gomes HL, Baumann RR. Up-scaling of the manufacturing of all-inkjet-printed organic thin-film transistors: device performance and manufacturing yield of transistor arrays. Org Electron. 2016;30:237–46. https://doi.org/10.1016/J.ORGEL.2015.12.018.

    Article  CAS  Google Scholar 

  49. Verreck G, Chun I, Rosenblatt J, Peeters J, Van Dijck A, Mensch J, Noppe M, Brewster ME. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release. 2003;92:349–60. https://doi.org/10.1016/S0168-3659(03)00342-0.

    Article  CAS  PubMed  Google Scholar 

  50. Nallan HC, Sadie JA, Kitsomboonloha R, Volkman SK, Subramanian V. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir. 2014;30:13470–7. https://doi.org/10.1021/LA502903Y.

    Article  CAS  PubMed  Google Scholar 

  51. Scarpa M, Stegemann S, Hsiao WK, Pichler H, Gaisford S, Bresciani M, Paudel A, Orlu M. Orodispersible films: towards drug delivery in special populations. Int J Pharm. 2017;523:327–35. https://doi.org/10.1016/j.ijpharm.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  52. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79:405–18. https://doi.org/10.1111/bcp.12268.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viergever RF, Rademaker CMA, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1:e000221–e000221. https://doi.org/10.1136/bmjopen-2011-000221.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102–26. https://doi.org/10.1016/j.addr.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  55. Rajchgot P, Prober CG, Soldin S, Golas C, Good F, Harding E, MacLeod S. Chloramphenicol in the newborn infant. Prog Clin Biol Res. 1983;135:421–5. https://doi.org/10.1056/nejm196004212621601.

    Article  CAS  PubMed  Google Scholar 

  56. Batchelor H, Ernest T, Flanagan T, Klein S, Turner R, Fotaki N, Storey D. Towards the development of a paediatric biopharmaceutics classification system: results of a survey of experts. Int J Pharm. 2016;511:1151–7. https://doi.org/10.1016/j.ijpharm.2016.06.115.

    Article  CAS  PubMed  Google Scholar 

  57. Guimarães M, Statelova M, Holm R, Reppas C, Symilllides M, Vertzoni M, Fotaki N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products – a PEARRL review. J Pharm Pharmacol. 2019;71:603–42. https://doi.org/10.1111/jphp.12955.

    Article  CAS  PubMed  Google Scholar 

  58. Maharaj AR, Edginton AN, Fotaki N. Assessment of age-related changes in pediatric gastrointestinal solubility. Pharm Res. 2016;33:52–71. https://doi.org/10.1007/s11095-015-1762-7.

    Article  CAS  PubMed  Google Scholar 

  59. Bellanti F, Della Pasqua O. Modelling and simulation as research tools in paediatric drug development. Eur J Clin Pharmacol. 2011;67. https://doi.org/10.1007/s00228-010-0974-3.

  60. Björkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59:691–704. https://doi.org/10.1111/j.1365-2125.2004.02225.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gibbs JP, Murray G, Risler L, Chien JY, Dev R, Slattery JT. Age-dependent tetrahydrothiophenium ion formation in young children and adults receiving high-dose busulfan. Cancer Res. 1997;57:5509–16.

    CAS  PubMed  Google Scholar 

  62. Leong R, Vieira MLT, Zhao P, Mulugeta Y, Lee CS, Huang SM, Burckart GJ. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91:926–31. https://doi.org/10.1038/clpt.2012.19.

    Article  CAS  PubMed  Google Scholar 

  63. Läer S, Khalil F. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol. 2011. https://doi.org/10.1155/2011/907461.

  64. Barrett JS, Della Casa Alberighi O, Läer S, Meibohm B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92:40–49. https://doi.org/10.1038/clpt.2012.64.

  65. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47:231–43. https://doi.org/10.2165/00003088-200847040-00002.

    Article  CAS  PubMed  Google Scholar 

  66. Jadhav PR, Zhang J, Gobburu JVS. Leveraging prior quantitative knowledge in guiding pediatric drug development: a case study. Pharm Stat. 2009;8:216–24. https://doi.org/10.1002/pst.394.

    Article  PubMed  Google Scholar 

  67. Holford NHG, Kimko HC, Monteleone JPR, Peck CC. Simulation of clinical trials. Annu Rev Pharmacol Toxicol. 2000;40:209–34. https://doi.org/10.1146/annurev.pharmtox.40.1.209.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta MS, Kumar TP. Characterization of orodispersible films: an overview of methods and introduction to a new disintegration test apparatus using LDR - LED Sensors. J Pharm Sci. 2020;109:2925–42. https://doi.org/10.1016/j.xphs.2020.06.012.

    Article  CAS  PubMed  Google Scholar 

  69. Ali J, Zgair A, Hameed GS, Garnett MC, Roberts CJ, Burley JC, Gershkovich P. Application of biorelevant saliva-based dissolution for optimisation of orally disintegrating formulations of felodipine. Int J Pharm. 2019;555:228–36. https://doi.org/10.1016/j.ijpharm.2018.11.051.

    Article  CAS  PubMed  Google Scholar 

  70. Garsuch V, Breitkreutz J. Novel analytical methods for the characterization of oral wafers. Eur J Pharm Biopharm. 2009;73:195–201. https://doi.org/10.1016/j.ejpb.2009.05.010.

    Article  CAS  PubMed  Google Scholar 

  71. Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romañach RJ, Michniak-Kohn B, Iqbal Z, Bilgili E, Davé RN. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012;423:496–508. https://doi.org/10.1016/j.ijpharm.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  72. Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Stevens HN, Eccleston GM. In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int J Pharm. 2009;378:66–72. https://doi.org/10.1016/j.ijpharm.2009.05.038.

    Article  CAS  PubMed  Google Scholar 

  73. Maheswari KM, Devineni PK, Deekonda S, Shaik S, Uppala NP, Nalluri BN. Development and evaluation of mouth dissolving films of amlodipine besylate for enhanced therapeutic efficacy. J Pharm. 2014;2014:1–10. https://doi.org/10.1155/2014/520949.

    Article  Google Scholar 

  74. Shimoda H, Taniguchi K, Nishimura M, Matsuura K, Tsukioka T, Yamashita H, Inagaki N, Hirano K, Yamamoto M, Kinosada Y, Itoh Y. Preparation of a fast dissolving oral thin film containing dexamethasone: a possible application to antiemesis during cancer chemotherapy. Eur J Pharm Biopharm. 2009;73:361–5. https://doi.org/10.1016/j.ejpb.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  75. Xia Y, Chen F, Zhang H, Luo C. A new method for evaluating the dissolution of orodispersible films. Pharm Dev Technol. 2015;20:375–9. https://doi.org/10.3109/10837450.2014.882936.

    Article  CAS  PubMed  Google Scholar 

  76. Krampe R, Sieber D, Pein-Hackelbusch M, Breitkreutz J. A new biorelevant dissolution method for orodispersible films. Eur J Pharm Biopharm. 2016;98:20–5. https://doi.org/10.1016/j.ejpb.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  77. Cilurzo F, Cupone IE, Minghetti P, Buratti S, Selmin F, Gennari CGM, Montanari L. Nicotine fast dissolving films made of maltodextrins: a feasibility study. AAPS PharmSciTech. 2010;11:1511–7. https://doi.org/10.1208/s12249-010-9525-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharma R, Parikh RK, Gohel M, Soniwala MM. Development of taste masked film of valdecoxib for oral use. Indian J Pharm Sci. 2007;69:158.

    Google Scholar 

  79. Nagy ZK, Nyúl K, Wagner I, Molnár K, Marosi G. Electrospun water soluble polymer mat for ultrafast release of donepezil HCL. Express Polym Lett. 2010;4:763–72. https://doi.org/10.3144/expresspolymlett.2010.92.

    Article  CAS  Google Scholar 

  80. Nishimura M, Matsuura K, Tsukioka T, Yamashita H, Inagaki N, Sugiyama T, Itoh Y. In vitro and in vivo characteristics of prochlorperazine oral disintegrating film. Int J Pharm. 2009;368:98–102. https://doi.org/10.1016/j.ijpharm.2008.10.002.

    Article  CAS  PubMed  Google Scholar 

  81. Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. Eur J Pharm Biopharm. 2008;70:895–900. https://doi.org/10.1016/j.ejpb.2008.06.032.

    Article  CAS  PubMed  Google Scholar 

  82. Lange A, Funch-Jensen P, Thommesen P, Schiøtz PO. Gastric emptying patterns of a liquid meal in newborn infants measured by epigastric impedance. Neurogastroenterol Motil. 1997;9:55–62. https://doi.org/10.1046/j.1365-2982.1997.d01-20.x.

    Article  CAS  PubMed  Google Scholar 

  83. Villiger A, Stillhart C, Parrott N, Kuentz M. Using physiologically based pharmacokinetic (PBPK) modelling to gain insights into the effect of physiological factors on oral absorption in paediatric populations. AAPS J. 2016;18:933–47. https://doi.org/10.1208/s12248-016-9896-z.

    Article  CAS  PubMed  Google Scholar 

  84. De Bruyne P, De Guchtenaere A, Van Herzeele C, Raes A, Dehoorne J, Hoebeke P, Van Laecke E, Vande Walle J. Pharmacokinetics of desmopressin administered as tablet and oral lyophilisate formulation in children with monosymptomatic nocturnal enuresis. Eur J Pediatr. 2014;173:223–28. https://doi.org/10.1007/s00431-013-2108-2.

  85. Elder DP, Holm R, Kuentz M. Medicines for pediatric patients—biopharmaceutical, developmental, and regulatory considerations. J Pharm Sci. 2017;106:950–60. https://doi.org/10.1016/j.xphs.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  86. Lukacova V, Goelzer P, Reddy M, Greig G, Reigner B, Parrott N. A physiologically based pharmacokinetic model for ganciclovir and its prodrug valganciclovir in adults and children. AAPS J. 2016;18:1453–63. https://doi.org/10.1208/s12248-016-9956-4.

    Article  CAS  PubMed  Google Scholar 

  87. Takeuchi Y, Ikeda N, Tahara K, Takeuchi H. Mechanical characteristics of orally disintegrating films: comparison of folding endurance and tensile properties. Int J Pharm. 2020;589:22–9. https://doi.org/10.1016/j.ijpharm.2020.119876.

    Article  CAS  Google Scholar 

  88. Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461:22–9. https://doi.org/10.1016/j.ijpharm.2013.11.033.

    Article  CAS  PubMed  Google Scholar 

  89. Bodmeier R, Paeratakul O. Dry and wet strengths of polymeric films prepared from an aqueous colloidal polymer dispersion, Eudragit RS30D. Int J Pharm. 1993;96:129–38. https://doi.org/10.1016/0378-5173(93)90220-A.

    Article  CAS  Google Scholar 

  90. Liew KB, Tan YT, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40:110–119. https://doi.org/10.3109/03639045.2012.749889.

  91. Takeuchi Y, Kawamoto M, Tahara K, Takeuchi H. Design of a new disintegration test system for the evaluation of orally disintegrating films. Int J Pharm. 2018;553:281–9. https://doi.org/10.1016/j.ijpharm.2018.10.049.

    Article  CAS  PubMed  Google Scholar 

  92. Garsuch V, Breitkreutz J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J Pharm Pharmacol. 2010;62:539–45. https://doi.org/10.1211/jpp.62.04.0018.

    Article  CAS  PubMed  Google Scholar 

  93. Low A, Kok SL, Khong YM, Chan SY, Gokhale R. A new test unit for disintegration end-point determination of orodispersible films. J Pharm Sci. 2015;104:3893–903. https://doi.org/10.1002/JPS.24609.

    Article  CAS  PubMed  Google Scholar 

  94. Dave RN, Susarla R. United States patent : system and method for fabrication of uniform polymer films containing nano and micro particles via continuous drying process. 2014.

  95. Susarla R, Sievens-Figueroa L, Bhakay A, Shen Y, Jerez-Rozo JI, Engen W, Khusid B, Bilgili E, Romañach RJ, Morris KR, Michniak-Kohn B, Davé RN. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. Int J Pharm. 2013;455:93–103. https://doi.org/10.1016/j.ijpharm.2013.07.051.

    Article  CAS  PubMed  Google Scholar 

  96. Krull SM, Susarla R, Afolabi A, Li M, Ying Y, Iqbal Z, Bilgili E, Davé RN. Polymer strip films as a robust, surfactant-free platform for delivery of BCS class II drug nanoparticles. Int J Pharm. 2015;489:45–57. https://doi.org/10.1016/j.ijpharm.2015.04.034.

    Article  CAS  PubMed  Google Scholar 

  97. Krull SM, Patel HV, Li M, Bilgili E, Davé RN. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution. Eur J Pharm Sci. 2016;92:146–155. https://doi.org/10.1016/j.ejps.2016.07.005.

  98. Krull SM, Ammirata J, Bawa S, Li M, Bilgili E, Davé RN. Critical material attributes of strip films loaded with poorly water-soluble drug nanoparticles: II. Impact of polymer molecular weight. J Pharm Sci. 2017;106:619–628. https://doi.org/10.1016/j.xphs.2016.10.009.

  99. Zhang J, Ying Y, Pielecha-Safira B, Bilgili E, Ramachandran R, Romañach R, Davé RN, Iqbal Z. Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. Int J Pharm. 2014;475:428–37. https://doi.org/10.1016/j.ijpharm.2014.08.051.

    Article  CAS  PubMed  Google Scholar 

  100. Sievens-Figueroa L, Pandya N, Bhakay A, Keyvan G, Michniak-Kohn B, Bilgili E, Davé RN. Using USP i and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films. AAPS PharmSciTech. 2012;13:1473–82. https://doi.org/10.1208/s12249-012-9875-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm. 2021;47:1–11. https://doi.org/10.1080/03639045.2021.1879843.

    Article  CAS  PubMed  Google Scholar 

  102. Wilson VR, Lou X, Osterling DJ, Stolarik DAF, Jenkins GJ, Nichols BLB, Dong Y, Edgar KJ, Zhang GGZ, Taylor LS. Amorphous solid dispersions of enzalutamide and novel polysaccharide derivatives: investigation of relationships between polymer structure and performance. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-75077-7.

    Article  CAS  Google Scholar 

  103. Ramachandran G, Sudheesh MS. Role of permeability on the biopredictive dissolution of amorphous solid dispersions. AAPS PharmSciTech. 2021;22:2–12. https://doi.org/10.1208/s12249-021-02125-4.

    Article  CAS  Google Scholar 

  104. Preis M, Breitkreutz J, Sandler N. Perspective: concepts of printing technologies for oral film formulations. Int J Pharm. 2015;494:578–84. https://doi.org/10.1016/j.ijpharm.2015.02.032.

    Article  CAS  PubMed  Google Scholar 

  105. Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products – the FDA perspective, 3D Print. Med. 2016;2:4–9. https://doi.org/10.1186/s41205-016-0005-9.

    Article  Google Scholar 

  106. Öblom H, Sjöholm E, Rautamo M, Sandler N. Towards printed pediatric medicines in hospital pharmacies: comparison of 2d and 3d-printed orodispersiblewarfarin films with conventional oral powders in unit dose sachets. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11070334.

  107. Fastø MM, Genina N, Kaae S, Kälvemark Sporrong S. Perceptions, preferences and acceptability of patient designed 3D printed medicine by polypharmacy patients: a pilot study. Int J Clin Pharm. 2019;41:1290–1298. https://doi.org/10.1007/s11096-019-00892-6.

  108. Beer N, Hegger I, Kaae S, De Bruin ML, Genina N, Alves TL, Hoebert J, Sporrong SK. Scenarios for 3D printing of personalized medicines - a case study. Explor Res Clin Soc Pharm. 2021;4. https://doi.org/10.1016/j.rcsop.2021.100073.

  109. Food and Drug Administration. Technical considerations for additive manufactured medical devices: guidance for industry and food and drug administration staff document. 2017.

  110. Seoane-Viano I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553–75. https://doi.org/10.1016/j.addr.2021.05.003.

    Article  CAS  PubMed  Google Scholar 

  111. Edinger M, Bar-Shalom D, Rantanen J, Genina N. Visualization and non-destructive quantification of inkjet-printed pharmaceuticals on different substrates using raman spectroscopy and raman chemical imaging. Pharm Res. 2017;34:1023–36. https://doi.org/10.1007/s11095-017-2126-2.

    Article  CAS  PubMed  Google Scholar 

  112. Trenfield SJ, Goyanes A, Telford R, Wilsdon D, Rowland M, Gaisford S, Basit AW. 3D printed drug products: non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm. 2018;549:283–92. https://doi.org/10.1016/j.ijpharm.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  113. Trenfield SJ, Tan HX, Goyanes A, Wilsdon D, Rowland M, Gaisford S, Basit AW. Non-destructive dose verification of two drugs within 3D printed polyprintlets. Int J Pharm. 2020;577. https://doi.org/10.1016/j.ijpharm.2020.119066.

  114. Lee JH, Park C, Song IO, Lee BJ, Kang CY, Park JB. Investigation of patient-centric 3D-printed orodispersible films containing amorphous aripiprazole. Pharmaceuticals. 2022;15. https://doi.org/10.3390/ph15070895.

  115. Elbl J, Veselý M, Blaháčková D, Ondruš J, Kulich P, Mašková E, Mašek J, Gajdziok J. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing, Pharmaceutics. 2023;15. https://doi.org/10.3390/pharmaceutics15020714.

  116. Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm. 2020;575. https://doi.org/10.1016/j.ijpharm.2019.118883.

  117. Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull. 2019;42:1898–905. https://doi.org/10.1248/bpb.b19-00481.

    Article  CAS  PubMed  Google Scholar 

  118. Sjöholm E, Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm. 2019;564:117–23. https://doi.org/10.1016/j.ijpharm.2019.04.018.

    Article  CAS  PubMed  Google Scholar 

  119. Eleftheriadis GK, Kantarelis E, Monou PK, Andriotis EG, Bouropoulos N, Tzimtzimis EK, Tzetzis D, Rantanen J, Fatouros DG. Automated digital design for 3D-printed individualized therapies. Int J Pharm. 2021;599. https://doi.org/10.1016/j.ijpharm.2021.120437.

  120. Musazzi UM, Selmin F, Ortenzi MA, Mohammed GK, Franzé S, Minghetti P, Cilurzo F. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm. 2018;551:52–9. https://doi.org/10.1016/j.ijpharm.2018.09.013.

    Article  CAS  PubMed  Google Scholar 

  121. Tam CH, Alexander M, Belton P, Qi S. Drop-on-demand printing of personalised orodispersible films fabricated by precision micro-dispensing. Int J Pharm. 2021;610. https://doi.org/10.1016/j.ijpharm.2021.121279.

  122. Panraksa P, Qi S, Udomsom S, Tipduangta P, Rachtanapun P, Jantanasakulwong K, Jantrawut P. Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film. Polymers (Basel). 2021;13. https://doi.org/10.3390/polym13203454.

  123. Panraksa P, Udomsom S, Rachtanapun P, Chittasupho C, Ruksiriwanich W, Jantrawut P. Hydroxypropyl methylcellulose e15: a hydrophilic polymer for fabrication of orodispersible film using syringe extrusion 3D printer. Polymers (Basel). 2020;12:1–14. https://doi.org/10.3390/polym12112666.

    Article  CAS  Google Scholar 

  124. Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, Rizzi R, Lopalco A, Musazzi UM, Cilurzo F, Denora N. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. Int J Pharm. 2023;643:123214. https://doi.org/10.1016/j.ijpharm.2023.123214

  125. Vaz VM, Kumar L. 3D Printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22. https://doi.org/10.1208/s12249-020-01905-8.

  126. Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm. 2019;576:118963–118963. https://doi.org/10.1016/J.IJPHARM.2019.118963.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Shantikumar V Nair, Dean and Dr. Sabitha M, Principal for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by IAC and GR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M.S. Sudheesh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacko, I.A., Ramachandran, G. & Sudheesh, M. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv. and Transl. Res. 14, 841–857 (2024). https://doi.org/10.1007/s13346-023-01451-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01451-3

Keywords

Navigation