Skip to main content

Advertisement

Log in

Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cannabidiol (CBD), a non-psychoactive constituent of Cannabis, has proven neuroprotective, anti-inflammatory and antioxidant properties though his therapeutic use, especially by the oral route, is still challenged by the poor aqueous solubility that results in low oral bioavailability. In this work, we investigate the encapsulation of CBD within nanoparticles of a highly hydrophobic poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer produced by a simple and reproducible nanoprecipitation method. The encapsulation efficiency is ~ 100% and the CBD loading 11% w/w (high performance liquid chromatography). CBD-loaded nanoparticles show a monomodal size distribution with sizes of up to 100 nm (dynamic light scattering), a spherical morphology, and the absence of CBD crystals (high resolution-scanning electron microscopy and cryogenic-transmission electron microscopy) which is in line with a very efficient nanoencapsulation. Then, the CBD release profile from the nanoparticles is assessed under gastric- and intestine-like conditions. At pH 1.2, only 10% of the payload is released after 1 h. Conversely, at pH 6.8, a release of 80% is recorded after 2 h. Finally, the oral pharmacokinetics is investigated in rats and compared to a free CBD suspension. CBD-loaded nanoparticles lead to a statistically significant ~ 20-fold increase of the maximum drug concentration in plasma (Cmax) and a shortening of the time to the Cmax (tmax) from 4 to 0.3 h, indicating a more complete and faster absorption than in free form. Moreover, the area-under-the-curve (AUC), a measure of oral bioavailability, increased by 14 times. Overall results highlight the promise of this simple, reproducible, and scalable nanotechnology strategy to improve the oral performance of CBD with respect to common oily formulations and/or lipid-based drug delivery systems associated with systemic adverse effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data and materials are available upon request.

References

  1. Kogan NM, Mechoulam R. Cannabinoids in health and disease. Dialogues Clin Neurosci. 2007;9:413–30. https://doi.org/10.1515/jbcpp-2016-0045.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Esposito G, De Filippis D, Cirillo C, Iuvone T, Capoccia E, Scuderi C, Steardo A, Cuomo R, Steardo L. Cannabidiol in inflammatory bowel diseases: a brief overview. Phytoher Res. 2013;27:633–6. https://doi.org/10.1002/ptr.4781.

    Article  CAS  Google Scholar 

  3. Jamontt JM, Molleman A, Pertwee RG, Parsons ME. The effects of Δ 9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. Br J Pharmacol. 2010;160:712–23. https://doi.org/10.1111/j.1476-5381.2010.00791.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Śledziński P, Zeyland J, Słomski R, Nowak A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med. 2018;7:765–75. https://doi.org/10.1002/cam4.1312.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perucca E. Cannabinoids in the treatment of epilepsy: hard evidence at last? Epilepsy Res. 2017;7:61–76. https://doi.org/10.14581/jer.17012.

  6. ElSohly M, Gul W. Handbook of Cannabis. (Roger G. Pertwee, ed.). Oxford University Press; 2014. https://doi.org/10.1093/acprof:oso/9780199662685.001.0001.

  7. Hanuš LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016;33:1357–92. https://doi.org/10.1039/C6NP00074F.

    Article  PubMed  Google Scholar 

  8. Mechoulam R, Parker LA, Gallily R. Cannabidiol: An overview of some pharmacological aspects. J Clin Pharmacol. 2002;42(11 SUPPL.):11S-19S. https://doi.org/10.1002/j.1552-4604.2002.tb05998.x.

    Article  CAS  PubMed  Google Scholar 

  9. Scuderi C, De Filippis D, Iuvone T, Blasio A, Steardo A, Esposito G. Cannabidiol in medicine: A review of its therapeutic potential in CNS disorders. Phytother Res. 2009;23:597–602. https://doi.org/10.1002/ptr.2625.

    Article  CAS  PubMed  Google Scholar 

  10. Millar SA, Stone NL, Yates AS, O’Sullivan SE. A systematic review on the pharmacokinetics of cannabidiol in humans. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01365.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sholler DJ, Schoene L, Spindle TR. Therapeutic efficacy of cannabidiol (CBD): a review of the evidence from clinical trials and human laboratory studies. Curr Addict Rep. 2020;7:405–12. https://doi.org/10.1007/s40429-020-00326-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Odi R, Bibi D, Wager T, Bialer M. A perspective on the physicochemical and biopharmaceutic properties of marketed antiseizure drugs—From phenobarbital to cenobamate and beyond. Epilepsia. 2020;61:1543–52. https://doi.org/10.1111/epi.16597.

    Article  CAS  PubMed  Google Scholar 

  13. Sosnik A, Shabo RB, Halamish HM. Cannabidiol-loaded mixed polymeric micelles of chitosan/poly(vinyl alcohol) and poly(methyl methacrylate) for trans-corneal delivery. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13122142.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vlad RA, Hancu G, Ciurba A, Antonoaea P, Rédai EM, Todoran N, Silasi O, Muntean DL. Cannabidiol - therapeutic and legal aspects. Pharmazie. 2020;75:463–9. https://doi.org/10.1691/ph.2020.0076.

    Article  CAS  PubMed  Google Scholar 

  15. Franco V, Gershkovich P, Perucca E, Bialer M. The interplay between liver first-pass effect and lymphatic absorption of cannabidiol and its implications for cannabidiol oral formulations. Clin Pharmacokinet. 2020;59:1493–500. https://doi.org/10.1007/s40262-020-00931-w.

    Article  CAS  PubMed  Google Scholar 

  16. Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol. 2018;84:2477–82. https://doi.org/10.1111/bcp.13710.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kok LY, Bannigan P, Sanaee F, Evans JC, Dunne M, Regenold M, Ahmed L, Dubins D, Allen C. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. Eur J Pharm Sci. 2022. https://doi.org/10.1016/j.ejps.2021.106058.

    Article  PubMed  Google Scholar 

  18. Cherniakov I, Izgelov D, Domb AJ, Hoffman A. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model. Eur J Pharm Sci. 2017;109:21–30. https://doi.org/10.1016/j.ejps.2017.07.003.

    Article  CAS  PubMed  Google Scholar 

  19. Izgelov D, Davidson E, Barasch D, Regev A, Domb AJ, Hoffman A. Pharmacokinetic investigation of synthetic cannabidiol oral formulations in healthy volunteers. Eur J Pharm Biopharm. 2020;154:108–15. https://doi.org/10.1016/j.ejpb.2020.06.021.

    Article  CAS  PubMed  Google Scholar 

  20. Izgelov D, Regev A, Domb AJ, Hoffman A. Using the absorption cocktail approach to assess differential absorption kinetics of cannabidiol administered in lipid-based vehicles in rats. Mol Pharm. 2020;17:1979–86. https://doi.org/10.1021/acs.molpharmaceut.0c00141.

    Article  CAS  PubMed  Google Scholar 

  21. Ramalho ÍMDM, Pereira DT, Galvão GBL, Freire DT, Amaral-Machado L, Alencar ÉDN, Egito ESTD. Current trends on cannabidiol delivery systems: where are we and where are we going? Expert Opin Drug Del. 2021;18:1577–87. https://doi.org/10.1080/17425247.2021.1952978.

    Article  CAS  Google Scholar 

  22. Überall MA. A review of scientific evidence for THC:CBD oromucosal spray (nabiximols) in the management of chronic pain. J Pain Res. 2020;13:399–410. https://doi.org/10.2147/JPR.S240011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martinez-Paz C, García-Cabrera E, Vilches-Arenas A. Effectiveness and safety of cannabinoids as an add-on therapy in the treatment of resistant spasticity in multiple sclerosis: a systematic review. Cannabis Cannabinoid Res. 2023; in press. https://doi.org/10.1089/can.2022.0254.

  24. Siloramore LH, Willmer AR, Capparelli EV, Rosania GR. Food effects on the formulation, dosing, and administration of cannabidiol (CBD) in humans: a systematic review of clinical studies. Pharmacotherapy. 2021;41:405–20. https://doi.org/10.1002/phar.2512.

    Article  CAS  Google Scholar 

  25. Abu-Sawwa R, Stehling C. Epidiolex (cannabidiol) primer: frequently asked questions for patients and caregivers. J Pediatr Pharmacol Ther. 2020;25:75–7. https://doi.org/10.5863/1551-6776-25.1.75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Millar SA, Maguire RF, Yates AS, O’Sullivan SE. Towards better delivery of cannabidiol (CBD). Pharmaceuticals. 2020;13:1–15. https://doi.org/10.3390/ph13090219.

    Article  CAS  Google Scholar 

  27. Lazzarotto Rebelatto ER, Schneider Rauber G, Caon T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int J Pharm. 2023;635:122727. https://doi.org/10.1016/j.ijpharm.2023.122727.

    Article  CAS  PubMed  Google Scholar 

  28. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4:1–16. https://doi.org/10.1002/btm2.10143.

    Article  Google Scholar 

  29. Sosnik A, Mühlebach S. Editorial: Drug nanoparticles and nano-cocrystals: from production and characterization to clinical translation. Adv Drug Deliver Rev. 2018;131:1–2. https://doi.org/10.1016/j.addr.2018.09.001.

    Article  CAS  Google Scholar 

  30. Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliver Rev. 2014;73:140–61. https://doi.org/10.1016/j.addr.2014.05.004.

    Article  CAS  Google Scholar 

  31. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10:1–41. https://doi.org/10.3390/nano10071403.

    Article  CAS  Google Scholar 

  32. Sosnik A, Menaker RM. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv. 2015;33:1380–92. https://doi.org/10.1016/j.biotechadv.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  33. Sosnik A. Production of drug-loaded polymeric nanoparticles by electrospraying technology. J Biomed Nanotechnol. 2014;10:2200–17. https://doi.org/10.1166/jbn.2014.1887.

    Article  CAS  PubMed  Google Scholar 

  34. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40–54. https://doi.org/10.1016/j.cis.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  35. Dash TK, Konkimalla VB. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158:15–33. https://doi.org/10.1016/j.jconrel.2011.09.064.

    Article  CAS  PubMed  Google Scholar 

  36. Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci. 2008;322:505–15. https://doi.org/10.1016/j.jcis.2008.03.033.

    Article  CAS  PubMed  Google Scholar 

  37. Gottert S, Salomatov R, Eder S, Seyfang B, Sotelo D, Osma J, Weiss C. Continuous nanoprecipitation of polycaprolactone in additively manufactured micromixers. Polymers. 2022. https://doi.org/10.3390/polym14081509.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tshweu L, Katata L, Kalombo L, Chiappetta DA, Hocht C, Sosnik A, Swai H. Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine. 2014;9:1821–33. https://doi.org/10.2217/NNM.13.167.

    Article  CAS  PubMed  Google Scholar 

  39. Kuplennik N, Lang K, Steinfeld R, Sosnik A. Folate receptor α-modified nanoparticles for targeting of the central nervous system. ACS Appl Mater Interfaces. 2019;11:39633–47. https://doi.org/10.1021/acsami.9b14659.

    Article  CAS  PubMed  Google Scholar 

  40. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, Casciato S, Brannon-Peppas L. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res Part A. 2009;91:263–76. https://doi.org/10.1002/jbm.a.32247.

    Article  CAS  Google Scholar 

  41. Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60. https://doi.org/10.1016/j.jconrel.2017.05.028.

    Article  CAS  PubMed  Google Scholar 

  42. Behl A, Parmar VS, Malhotra S, Chhillar AK. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer. 2020;207:122901. https://doi.org/10.1016/j.polymer.2020.122901.

    Article  CAS  Google Scholar 

  43. Eltayeb M, Stride E, Edirisinghe M, Harker A. Electrosprayed nanoparticle delivery system for controlled release. Mater Sci Eng C. 2016;66:138–46. https://doi.org/10.1016/j.msec.2016.04.001.

    Article  CAS  Google Scholar 

  44. Berman P, Sulimani L, Gelfand A, Amsalem K, Lewitus GM, Meiri D. Cannabinoidomics – An analytical approach to understand the effect of medical Cannabis treatment on the endocannabinoid metabolome. Talanta. 2020;219:121336. https://doi.org/10.1016/j.talanta.2020.121336.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.

    Article  PubMed  Google Scholar 

  46. Sosnik A, Cohn D. Poly(ethylene glycol)-poly(epsilon-caprolactone) block oligomers as injectable materials. Polymer. 2003;44:7033–42. https://doi.org/10.1016/j.polymer.2003.09.012.

    Article  CAS  Google Scholar 

  47. Monterrubio C, Paco S, Olaciregui NG, Pascual-Pasto G, Vila-Ubach M, Cuadrado-Vilanova M, Ferrandiz MM, Castillo-Ecija H, Glisoni R, Kuplennik N, Jungbluth A, de Torres C, Lavarino C, Cheung NKV, Mora J, Sosnik A, Carcaboso AM. Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control Release. 2017;255:108–19. https://doi.org/10.1016/j.jconrel.2017.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12:1459–73. https://doi.org/10.1517/17425247.2015.1018175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release. 2016;240:504–26. https://doi.org/10.1016/j.jconrel.2016.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm. 2021;165:345–60. https://doi.org/10.1016/j.ejpb.2021.05.024.

    Article  CAS  PubMed  Google Scholar 

  51. Messner M, Kurkov SV, Jansook P, Loftsson T. Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm. 2010;387:199–208. https://doi.org/10.1016/j.ijpharm.2009.11.035.

    Article  CAS  PubMed  Google Scholar 

  52. Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface. 2012;9:487–502. https://doi.org/10.1098/rsif.2011.0414.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.S. thanks the support of the Tamara and Harry Handelsman Academic Chair. D.M. thanks Ohad Guberman for methodological support. I.S.L. thanks the Russell Berrie Nanotechnology Institute (RBNI, Technion – Israel Institute of Technology) for the doctoral scholarship.

Funding

This research was funded in part by the RBNI (Technion – Israel Institute of Technology).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.M, A.S; Methodology: I.S.L., L.S., A.Sh.; Data analysis: I.S.L., L.S., A.Sh.; Writing — original draft preparation, I.S., D.M., S.P., A.S.; supervision, D.M. and A.S.; funding acquisition: D.M. and A.S.; project administration, D.M. and A.S.

Corresponding authors

Correspondence to David Meiri or Alejandro Sosnik.

Ethics declarations

Ethics approval and consent to participate

The animal studies have been conducted under the ethical guidelines of animal experimentation.

Consent for publication

All authors have read and agreed to the published version of the review manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 826 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreiber-Livne, I., Sulimani, L., Shapira, A. et al. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv. and Transl. Res. 13, 3192–3203 (2023). https://doi.org/10.1007/s13346-023-01380-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01380-1

Keywords

Navigation