Skip to main content

Advertisement

Log in

New perspectives on the topical management of recurrent candidiasis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Candidiasis is a common opportunistic infection caused by fungi of the Candida genus that affects mainly mucocutaneous tissues (e.g., vaginal, oral, and mammary). This condition has been known for a long time; thus, innumerous topical and systemic treatments are already available on the market worldwide. Yet, recurrent superficial candidiasis (RSC) is an expected outcome, still lacking effective and convenient treatments. Although several individual conditions may contribute to disease recurrence, biofilms’ presence seems to be the main etiological factor contributing to antifungal resistance. More than proposing novel antifungal agents, current research seems to be focusing on improving the pharmaceutical technology aspects of formulations to address such a challenge. These include extending and improving intimate contact of drug delivery systems with the mucocutaneous tissues, increasing drug loading dose, and enhancing topical drug permeation. This review discusses the current understanding of the RSC and the use of pharmaceutical technology tools in obtaining better results. Even though several drawbacks of conventional formulations have been circumvented with the help of nano- or microencapsulation techniques and with the use of mucoadhesive formulation excipients, many challenges remain. In particular, the need to mask the unpalatable taste of formulations for the treatment of oral candidiasis, and the necessity of formulations with a “dryer” sensorial feeling and improved performances in providing higher bioavailability for the treatment of mammary and vaginal candidiasis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel) [Internet]. 2020 [cited 2020 Jul 13];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345657/

  2. de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes M do S, Filho AKDB, do Nascimento FRF, et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol [Internet]. 2018 [cited 2020 Jul 22];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038711/

  3. Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care [Internet]. 2018 [cited 2020 Jul 15];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206635/

  4. Salazar SB, Simões RS, Pedro NA, Pinheiro MJ, Carvalho MFNN, Mira NP. An overview on conventional and non-conventional therapeutic approaches for the treatment of candidiasis and underlying resistance mechanisms in clinical strains. J Fungi (Basel). 2020;6.

  5. Ciurea CN, Kosovski I-B, Mare AD, Toma F, Pintea-Simon IA. Man A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A review of the virulence traits. Microorganisms; 2020. p. 8.

    Google Scholar 

  6. Rosati D, Bruno M, Jaeger M, ten Oever J, Netea MG. Recurrent vulvovaginal candidiasis: an immunological perspective. Microorganisms [Internet]. 2020 [cited 2020 Jul 20];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074770/

  7. Meis JFGM, Verweij PE. Current management of fungal infections. Drugs. 2001;61:13–25.

    Article  CAS  PubMed  Google Scholar 

  8. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1-50.

    Article  PubMed  Google Scholar 

  9. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23:253–73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M. Candida species biofilms’ antifungal resistance. J Fungi (Basel) [Internet]. 2017 [cited 2020 Jul 20];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715972/

  11. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal candidiasis: a current understanding and burning questions. J Fungi (Basel) [Internet]. 2020 [cited 2020 Sep 8];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151053/

  13. Foxman B, Muraglia R, Dietz JP, Sobel JD, Wagner J. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an internet panel survey. J Low Genit Tract Dis. 2013;17:340–5.

    Article  PubMed  Google Scholar 

  14. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis Elsevier Ltd. 2018;18:e339–47.

    Article  Google Scholar 

  15. Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol. Taylor & Francis; 2016;42:905–27.

  16. Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. Elsevier Inc.; 2016;214:15–21.

  17. Sherry L, Kean R, McKloud E, O'Donnell LE, Metcalfe R, Jones BL, et al. Biofilms formed by isolates from recurrent vulvovaginal candidiasis patients are heterogeneous and insensitive to fluconazole. Antimicrob Agents Chemother [Internet]. 2017 [cited 2020 Sep 8];61. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571368/

  18. Rautemaa R, Ramage G. Oral candidosis – Clinical challenges of a biofilm disease. Crit Rev Microbiol. Taylor & Francis; 2011;37:328–36.

  19. Lewis M a. O, Williams DW. Diagnosis and management of oral candidosis. Br Dent J. Nat Publ Group; 2017;223:675–81.

  20. Williams DW, Lewis M. Isolation and identification of candida from the oral cavity. Oral Dis. 2000;6:3–11.

    Article  CAS  PubMed  Google Scholar 

  21. Leung WK, Dassanayake RS, Yau JYY, Jin LJ, Yam WC, Samaranayake LP. Oral colonization, phenotypic, and genotypic profiles of Candida species in irradiated, dentate, xerostomic nasopharyngeal carcinoma survivors. J Clin Microbiol. 2000;38:2219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Karaawi ZM, Manfredi M, Waugh ACW, McCullough MJ, Jorge J, Scully C, et al. Molecular characterization of Candida spp. isolated from the oral cavities of patients from diverse clinical settings. Oral Microbiol Immunol. 2002;17:44–9.

  23. Dangi YS, Soni ML, Namdeo KP. Oral candidiasis: a review. Int J Pharm Pharm Sci. 2010;2:36–41.

    CAS  Google Scholar 

  24. Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral candidiasis: a disease of opportunity. J Fungi (Basel) [Internet]. 2020 [cited 2020 Sep 8];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151112/

  25. Dias GH, Cáuper FRM, Corrêa TCF, Gondim R, Cruz KS. Isolamento e caracterização de Candida sp. no mamilo de lactantes de uma maternidade da rede pública na cidade de Manaus. Scientia Amazonia. 2018;9.

  26. Wiener S. Diagnosis and management of candida of the nipple and breast. J of Midwifery and Women’s Health. 2006;51:125–8.

    Article  Google Scholar 

  27. Andrews JI, Fleener DK, Messer SA, Hansen WF, Pfaller MA, Diekema DJ. The yeast connection: is Candida linked to breastfeeding associated pain? Am J Obstet Gynecol. 2007;197:424.e1-424.e4.

    Article  Google Scholar 

  28. Jiménez E, Arroyo R, Cárdenas N, Marín M, Serrano P, Fernández L, et al. Mammary candidiasis: a medical condition without scientific evidence? Smidt H, editor. PLoS ONE. 2017;12:e0181071.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carmichael AR, Dixon JM. Is lactation mastitis and shooting breast pain experienced by women during lactation caused by Candida albicans? The Breast. 2002;11:88–90.

    Article  CAS  PubMed  Google Scholar 

  30. Morrill JF, Pappagianis D, Heinig MJ, Lönnerdal B, Dewey KG. Detecting Candida albicans in human milk. J Clin Microbiol. 2002;41:475–8.

    Article  Google Scholar 

  31. Ferreira CB, Andrade, Sara. Mastite por Candida em lactante: um relato de caso. RPMGF. 2019;35:53–6.

  32. Menezes EA, Guerra ACP, Rodrigues R de CB, Peixoto MMLV, Lima LS, Cunha FA. Isolamento de Candida spp. no mamilo de lactantes do Banco de Leite Humano da Universidade Federal do Ceará e teste de susceptibilidade a antifúngicos. J Bras Patol Med Lab. 2004;40:299–305.

  33. Hale TW, Bateman TL, Finkelman MA, Berens PD. The absence of Candida albicans in milk samples of women with clinical symptoms of ductal candidiasis. Breastfeeding Medicine. 2009;4:57–61.

    Article  PubMed  Google Scholar 

  34. Amir LH, Cullinane M, Garland SM, Tabrizi SN, Donath SM, Bennett CM, et al. The role of micro-organisms (Staphylococcus aureus and Candida albicans) in the pathogenesis of breast pain and infection in lactating women: study protocol. BMC Pregnancy Childbirth. 2011;11:54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kent J, Ashton E, Hardwick C, Rowan M, Chia E, Fairclough K, et al. Nipple pain in breastfeeding mothers: incidence. causes and treatments IJERPH. 2015;12:12247–63.

    Article  PubMed  Google Scholar 

  36. Morrill JF, Pappagianis D, Heinig MJ, Lonnerdal B, Dewey KG. Detecting Candida albicans in human milk. J Clin Microbiol. 2003;41:475–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morrill JF, Jane Heinig M, Pappagianis D, Dewey KG. Risk factors for mammary candidosis among lactating women. J Obstet Gynecol Neonatal Nurs. 2005;34:37–45.

    Article  PubMed  Google Scholar 

  38. Amir LH, Donath SM, Garland SM, Tabrizi SN, Bennett CM, Cullinane M, et al. Does candida and/or staphylococcus play a role in nipple and breast pain in lactation? A cohort study in melbourne, australia. BMJ Open. 2013;3:1–6.

    Article  Google Scholar 

  39. Butts A, Palmer GE, Rogers PD. Antifungal adjuvants: preserving and extending the antifungal arsenal. Virulence. 2016;8:198–210.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McEvoy K, Normile TG, Poeta MD. Antifungal drug development: targeting the fungal sphingolipid pathway. J Fungi (Basel). 2020;6.

  41. Efimova SS, Schagina LV, Ostroumova OS. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Naturae. 2014;6:67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol. 2011;6:441–57.

    Article  CAS  PubMed  Google Scholar 

  43. Perlin DS, Shor E, Zhao Y. Update on antifungal drug resistance. Curr Clin Microbiol Rep. 2015;2:84–95.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med [Internet]. 2015 [cited 2020 Aug 7];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484955/

  45. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–92.

    Article  PubMed  Google Scholar 

  46. Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clinical microbiology reviews. American Society for Microbiology Journals; 2014;27:68–88.

  47. Sobel JD, Wiesenfeld HC, Martens M, Danna P, Hooton TM, Rompalo A, et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med. 2004;351:876–83.

    Article  CAS  PubMed  Google Scholar 

  48. Sobel JD, Faro S, Force RW, Foxman B, Ledger WJ, Nyirjesy PR, et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am J Obstet Gynecol. 1998;178:203–11.

    Article  CAS  PubMed  Google Scholar 

  49. Spinillo A, Nicola S, Colonna L, Marangoni E, Cavanna C, Michelone G. Frequency and significance of drug resistance in vulvovaginal candidiasis. Gynecol Obstet Invest. 1994;38:130–3.

    Article  CAS  PubMed  Google Scholar 

  50. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015;58:2–13.

    Article  PubMed  Google Scholar 

  51. Wu S, Wang Y, Liu N, Dong G, Sheng C. Tackling fungal resistance by biofilm inhibitors. J Med Chem. Am Chem Soc. 2017;60:2193–211.

  52. Íñigo M, Pozo JLD. Fungal biofilms: from bench to bedside. Rev Esp Quimioter. 2018;31:35–8.

    PubMed  Google Scholar 

  53. Muzny CA, Schwebke JR. Biofilms: an underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin Infect Dis. 2015;61:601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal biofilms and drug resistance. Emerg Infect Dis. 2004;10:14–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, et al. Fungal biofilms and polymicrobial diseases. J Fungi (Basel) [Internet]. 2017 [cited 2020 Jul 27];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715925/

  56. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Critical Reviews in Microbiology. Taylor & Francis; 2009;35:340–55.

  57. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183:5385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16:19–31.

    Article  CAS  PubMed  Google Scholar 

  60. Wuyts J, Van Dijck P, Holtappels M. Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog [Internet]. 2018 [cited 2020 Aug 12];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193731/

  61. Vediyappan G, Rossignol T, d’Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother. 2010;54:2096–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Borghi E, Borgo F, Morace G. Fungal biofilms: update on resistance. Adv Exp Med Biol. 2016;931:37–47.

    Article  PubMed  Google Scholar 

  63. Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug sequestering matrix glucan. J Infect Dis. 2010;202:171–5.

    Article  CAS  PubMed  Google Scholar 

  64. Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, et al. Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci USA. 2015;112:4092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matheson A, Mazza D. Recurrent vulvovaginal candidiasis: a review of guideline recommendations. Aust N Z J Obstet Gynaecol. 2017;57:139–45.

    Article  PubMed  Google Scholar 

  66. Dovnik A, Golle A, Novak D, Arko D, Takač I. Treatment of vulvovaginal candidiasis: a review of the literature. Acta Dermatovenerologica Alpina, Pannonica et Adriatica. 2015;24:5–7.

    Article  Google Scholar 

  67. Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv. 2014;23:550–63.

    Article  PubMed  Google Scholar 

  68. Newson L. Management of vulvovaginal infections in primary care part 1: candidiasis. BJFM. 2013;1.

  69. Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. Adv Drug Del Rev. Elsevier B.V.; 2015;92:105–22.

  70. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016;23:564–78.

    Article  CAS  PubMed  Google Scholar 

  71. Bergh PA. The gynecologist and the older patient. Rockville, Md: Aspen Publishers; 1988.

    Google Scholar 

  72. Sobel, Jack D., Barbieri, Robert L, Eckler, Kristen. Patient education: vaginal discharge in adult women (Beyond the basics). UpToDate. 2019.

  73. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103:301–13.

    Article  CAS  PubMed  Google Scholar 

  74. Parnami N, Garg T, Rath G, Goyal AK. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif Cells Nanomed Biotechnol. 2013;42:406–12.

    Article  PubMed  Google Scholar 

  75. Sobel JD, Sobel R. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species. Expert Opinion on Pharmacotherapy. Taylor & Francis; 2018;19:971–7.

  76. Brahmbhatt D. Bioadhesive drug delivery systems: overview and recent advances. International Journal of Chemical and Life Sciences. 2017;6:2016.

    Article  Google Scholar 

  77. Bruschi ML, de Francisco LMB, de Toledo L de AS, Borghi FB. An overview of recent patents on nanocarrier based ophthalmic drug delivery systems. Recent Pat Drug Deliv Formul. 2015;9:79–87.

  78. Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev. Elsevier B.V.; 2015;92:39–52.

  79. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.

    Article  CAS  PubMed  Google Scholar 

  80. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.

    Article  CAS  PubMed  Google Scholar 

  81. Rossi S, Ferrari F, Bonferoni MC, Sandri G, Faccendini A, Puccio A, et al. Comparison of poloxamer-and chitosan-based thermally sensitive gels for the treatment of vaginal mucositis. Drug Dev Ind Pharm. 2014;40:352–60.

    Article  CAS  PubMed  Google Scholar 

  82. Randhawa MA, Gondal MA, Al-Zahrani AHJ, Rashid SG, Ali A. Synthesis, morphology and antifungal activity of nano-particulated amphotericin-B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida biofilm. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2015;50:119–24.

    CAS  Google Scholar 

  83. Salah S, Awad GEA, Makhlouf AIA. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci. 2018;114:255–66.

    Article  CAS  PubMed  Google Scholar 

  84. Kenechukwu FC, Attama AA, Ibezim EC, Nnamani PO, Umeyor CE, Uronnachi EM, et al. Novel intravaginal drug delivery system based on molecularly PEGylated lipid matrices for improved antifungal activity of miconazole nitrate. Biomed Res Int. 2018;2018:1–18.

    Article  Google Scholar 

  85. Pereira MN, Reis TA, Matos BN, Cunha-Filho M, Gratieri T, Gelfuso GM. Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems. Colloids Surf, B. 2017;158:222–8.

    Article  CAS  Google Scholar 

  86. Abd Ellah NH, Abdel-Aleem JA, Abdo MN, Abou-Ghadir OF, Zahran KM, Hetta HF. Efficacy of ketoconazole gel-flakes in treatment of vaginal candidiasis: formulation, in vitro and clinical evaluation. Int J Pharm. 2019;567:118472.

    Article  CAS  PubMed  Google Scholar 

  87. Wu X, Zhang S, Xu X, Shen L, Xu B, Qu W, et al. RAFT-derived polymethacrylates as a superior treatment for recurrent vulvovaginal candidiasis by targeting biotic biofilms and persister cells. Front Microbiol. 2019;10:2592.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ci T, Yuan L, Bao X, Hou Y, Wu H, Sun H, et al. Development and anti-Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel. J Drug Target. Taylor & Francis; 2018;26:829–39.

  89. Marrazzo JM, Dombrowski JC, Wierzbicki MR, Perlowski C, Pontius A, Dithmer D, et al. Safety and efficacy of a novel vaginal anti-infective, TOL-463, in the treatment of bacterial vaginosis and vulvovaginal candidiasis: a randomized, single-blind, phase 2, controlled trial. Clin Infect Dis. 2019;68:803–9.

    Article  CAS  PubMed  Google Scholar 

  90. Nematpour N, Moradipour P, Zangeneh MM, Arkan E, Abdoli M, Behbood L. The application of nanomaterial science in the formulation a novel antibiotic: assessment of the antifungal properties of mucoadhesive clotrimazole loaded nanofiber versus vaginal films. Mater Sci Eng C. Elsevier; 2020;110:110635.

  91. Mishra R, Joshi P, Mehta T. Formulation, development and characterization of mucoadhesive film for treatment of vaginal candidiasis. Int J Pharm Investig. 2016;6:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rençber S, Karavana SY, Şenyiğit ZA, Eraç B, Limoncu MH, Baloğlu E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol. 2016;22:551–61.

    Article  PubMed  Google Scholar 

  93. Soriano-Ruiz JL, Calpena-Capmany AC, Cañadas-Enrich C, Febrer NB de, Suñer-Carbó J, Souto EB, et al. Biopharmaceutical profile of a clotrimazole nanoemulsion: evaluation on skin and mucosae as anticandidal agent. Inter J Pharm. Elsevier B.V.; 2018;554:105–15.

  94. Calvo NL, Sreekumar S, Svetaz LA, Lamas MC, Moerschbacher BM, Leonardi D. Design and characterization of chitosan nanoformulations for the delivery of antifungal agents. Inter J Mol Sci. 2019;20.

  95. Darwesh B, Aldawsari HM. Badr-Eldin SM. Optimized chitosan/anion polyelectrolyte complex based inserts for vaginal delivery of fluconazole: In vitro/in vivo evaluation. Pharmaceutics; 2018. p. 10.

    Google Scholar 

  96. Takalkar D, Desai N. Nanolipid gel of an antimycotic drug for treating vulvovaginal candidiasis—development and evaluation. AAPS PharmSciTech AAPS PharmSciTech. 2017;19:1297–307.

    Article  Google Scholar 

  97. Fitaihi RA, Aleanizy FS, Elsamaligy S, Mahmoud HA, Bayomi MA. Role of chitosan on controlling the characteristics and antifungal activity of bioadhesive fluconazole vaginal tablets. Saudi Pharm J. The Authors. 2017;26:151–61.

  98. Mirza MA, Panda AK, Asif S, Verma D, Talegaonkar S, Manzoor N, et al. A vaginal drug delivery model. Drug Delivery. 2016;23:3123–34.

    Article  CAS  PubMed  Google Scholar 

  99. Andersen T, Mishchenko E, Flaten GE, Sollid JUE, Mattsson S, Tho I, et al. Chitosan-based nanomedicine to fight genital Candida infections: chitosomes. Marine Drugs. 2017;15:1–12.

    Article  Google Scholar 

  100. Costa AF, Araujo DE, Cabral MS, Brito IT, De Menezes Leite LB, Pereira M, et al. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2017;57:52–62.

    Article  Google Scholar 

  101. Abdellatif MM, Khalil IA, Elakkad YE, Eliwa HA, Samir TM, Al-Mokaddem AK. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis. Int J Nanomed. 2020;15:4079–90.

    Article  CAS  Google Scholar 

  102. Calvo NL, Svetaz LA, Alvarez VA, Quiroga AD, Lamas MC, Leonardi D. Chitosan-hydroxypropyl methylcellulose tioconazole films: a promising alternative dosage form for the treatment of vaginal candidiasis. Int J Pharm. Elsevier B.V.; 2018.

  103. Dennis C-L, Jackson K, Watson J. Interventions for treating painful nipples among breastfeeding women. Cochrane Pregnancy and Childbirth Group, editor. Cochrane Database of Systematic Reviews [Internet]. 2014 [cited 2020 Sep 24]; Available from: http://doi.wiley.com/https://doi.org/10.1002/14651858.CD007366.pub2

  104. Morland-Schultz K, Hill PD. Prevention of and therapies for nipple pain: a systematic review. J Obstet Gynecol Neonatal Nurs. 2005;34:428–37.

    Article  PubMed  Google Scholar 

  105. Hanna L. Candida mastitis: a case report. permj [Internet]. 2011 [cited 2020 Sep 24];15. Available from: http://www.thepermanentejournal.org/issues/2011/winter/491-candida-mastitis-a-case-report.html

  106. Moorhead AM, Amir LH, O’Brien PW, Wong S. A prospective study of fluconazole treatment for breast and nipple thrush. Breastfeed Rev. 2011;19:25–9.

    PubMed  Google Scholar 

  107. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:10–24.

    Article  CAS  PubMed  Google Scholar 

  108. Wiener S. Diagnosis and management of Candida of the nipple and breast. J Midwifery & Women’s Health. 2006;51:125–8.

    Article  Google Scholar 

  109. Huggins, Kathleen E., Billon, Sharon F. Twenty cases of persistent sore nipples: collaboration between lactation consultant and dermatologist. Research. 3rd ed. J Hum Lact. 1993;155–60.

  110. Sharon V, Fazel N. Oral candidiasis and angular cheilitis. Dermatol Ther. 2010;23:230–42.

    Article  PubMed  Google Scholar 

  111. Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J Oral Microbiol. 2011;3:1–11.

    Article  Google Scholar 

  112. Sankar V, Hearnden V, Hull K, Juras DV, Greenberg M, Kerr A, et al. Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis. 2011;17:73–84.

    Article  PubMed  Google Scholar 

  113. Millsop JW, Fazel N. Oral candidiasis. Clinics in Dermatology. Elsevier B.V.; 2016.

  114. Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal infections. Periodontology. 2000;2009(49):39–59.

    Google Scholar 

  115. Rkein AM, Ozog DM. Photodynamic therapy. Dermatologic Clinics. Elsevier Inc; 2014;32:415–25.

  116. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.

    Article  CAS  PubMed  Google Scholar 

  117. Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:155–60.

    Article  CAS  PubMed  Google Scholar 

  118. Černáková L, Chupáčová J, Židlíková K, Bujdáková H. Effectiveness of the photoactive dye methylene blue versus caspofungin on the Candida parapsilosis biofilm in vitro and ex vivo. Photochem Photobiol. 2015;91:1181–90.

    Article  PubMed  Google Scholar 

  119. Costa ACBP, Campos Rasteiro VM, Da Silva Hashimoto ESH, Araújo CF, Pereira CA, Junqueira JC, et al. Effect of erythrosine- and LED-mediated photodynamic therapy on buccal candidiasis infection of immunosuppressed mice and Candida albicans adherence to buccal epithelial cells. Oral Surg Oral Med Oral Pathol Oral Radiol. Elsevier; 2012;114:67–74.

  120. Mima EG de O, Pavarina AC, Dovigo LN, Vergani CE, Costa CA de S, Kurachi C, et al. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. Elsevier Inc.; 2010;109:392–401.

  121. Carmello JC, Alves F, Basso FG, De Souza Costa CA, Bagnato VS, Mima EGDO, et al. Treatment of oral candidiasis using Photodithazine®- mediated photodynamic therapy in vivo. PLoS ONE. 2016;11:1–18.

    Article  Google Scholar 

  122. Cabrini Carmello J, Alves F, Basso FG, de Souza Costa CA, Tedesco AC, Lucas Primo F, et al. Antimicrobial photodynamic therapy reduces adhesion capacity and biofilm formation of Candida albicans from induced oral candidiasis in mice. Photodiagn Photod Ther Elsevier. 2019;27:402–7.

    Article  CAS  Google Scholar 

  123. Janeth Rimachi Hidalgo K, Cabrini Carmello J, Carolina Jordão C, Aboud Barbugli P, de Sousa Costa CA, Garcia de Oliveira Mima E, et al. Antimicrobial photodynamic therapy in combination with nystatin in the treatment of experimental oral candidiasis induced by candida albicans resistant to fluconazole. Pharmaceuticals. 2019;12.

  124. Khan A, Khan, Azam, Alam. Gold nanoparticles enhance methylene blue– induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. IJN. 2012;7:3245–57.

  125. Borges AC, de Morais Gouvêa Lima G, Mayumi Castaldelli Nishime T, Vidal Lacerda Gontijo A, Kostov KG, Koga-Ito CY. Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: in vivo study. PLoS ONE. 2018;13:1–19.

  126. Laroussi M. Plasma medicine: a brief introduction Plasma. 2018;1:47–60.

    Article  Google Scholar 

  127. Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;2019:10–3.

    Article  Google Scholar 

  128. Tonglairoum P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications. Colloids and Surf B Biointerfaces. Elsevier B.V.; 2015;126:18–25.

  129. Mura P, Mennini N, Kosalec I, Furlanetto S, Orlandini S, Jug M. Amidated pectin-based wafers for econazole buccal delivery: formulation optimization and antimicrobial efficacy estimation. Carbohydr Polym Elsevier Ltd. 2014;121:231–40.

    Article  Google Scholar 

  130. Gajra B, Pandya SS, Singh S, Rabari HA. Mucoadhesive hydrogel films of econazole nitrate: formulation and optimization using factorial design. Journal of Drug Delivery. Hindawi Publishing Corporation; 2014;2014:1–14.

  131. Rençber S, Karavana SY, Yılmaz FF, Eraç B, Nenni M, Özbal S, et al. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int J Nanomed. 2016;11:2641–53.

    Article  Google Scholar 

  132. Tejada G, Lamas MC, Sortino M, Alvarez VA, Leonardi D. Composite microparticles based on natural mucoadhesive polymers with promising structural properties to protect and improve the antifungal activity of miconazole nitrate. AAPS PharmSciTech AAPS PharmSciTech. 2018;19:3712–22.

    Article  CAS  PubMed  Google Scholar 

  133. Yan Z, Liu X, Liu Y, Han Y, Lin M, Wang W, et al. The efficacy and safety of miconazole nitrate mucoadhesive tablets versus itraconazole capsules in the treatment of oral candidiasis: an open-label, randomized, multicenter trial. PLoS ONE. 2016;11:1–12.

    Article  Google Scholar 

  134. Kenechukwu FC, Attama AA, Ibezim EC. Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis. J Microencapsul Informa UK Ltd. 2017;34:592–609.

    Article  CAS  Google Scholar 

  135. Bensadoun RJ, Daoud J, El Gueddari B, Bastit L, Gourmet R, Rosikon A, et al. Comparison of the efficacy and safety of miconazole 50-mg mucoadhesive buccal tablets with miconazole 500-mg gel in the treatment of oropharyngeal candidiasis: a prospective, randomized, single-blind, multicenter, comparative, phase III trial in patients. Am Cancer Soc. 2007;112:204–11.

    Google Scholar 

  136. Uzunoğlu B, Wilson CG, Sağıroğlu M, Yüksel S, Şenel S. Mucoadhesive bilayered buccal platform for antifungal drug delivery into the oral cavity. Drug Deliv Transl Res. 2020;

  137. De Aguiar MMGB, De Albuquerque RP, Marinho DS, Braga BRS, Dornelas CB, Oliveira A, et al. Oral sustained release nystatin tablets for the treatment of oral candidiasis: formulation development and validation of UV spectrophotometric analytical methodology for content determination. Drug Dev Ind Pharm. 2010;36:594–600.

    Article  PubMed  Google Scholar 

  138. Martín MJ, Calpena AC, Fernández F, Mallandrich M, Gálvez P, Clares B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr Polym Elsevier Ltd. 2015;117:140–9.

    Article  Google Scholar 

  139. Haghighi F, Mohammadi SR, Mohammadi P, Hosseinkhani S. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. IEM. 2013;1:6.

    Google Scholar 

  140. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol. 2015;13:91.

    Article  Google Scholar 

  141. Silva S, Pires P, Monteiro DR, Negri M, Gorup LF, Camargo ER, et al. The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic. Med Mycol. 2013;51:178–84.

    Article  CAS  PubMed  Google Scholar 

  142. Scwingel AR, Barcessat ARP, Núñez SC, Ribeiro MS. Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg. 2012;30:429–32.

    Article  CAS  PubMed  Google Scholar 

  143. Bruschi ML, de Freitas O. Oral bioadhesive drug delivery systems. Drug Dev Ind Pharm. 2005;31:293–310.

    Article  CAS  PubMed  Google Scholar 

  144. Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci. 1992;81:1–10.

    Article  CAS  PubMed  Google Scholar 

  145. Smart JD. Drug delivery using buccal-adhesive systems. Adv Drug Deliv Rev. 1993;11:253–70.

    Article  CAS  Google Scholar 

  146. Malaquias LFB, Sá-Barreto LCL, Freire DO, Silva ICR, Karan K, Durig T, et al. Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydr Polym Elsevier Ltd. 2018;185:19–26.

    Article  CAS  Google Scholar 

  147. Malaquias LFB, Schulte HL, Chaker JA, Karan K, Durig T, Marreto RN, et al. Hot melt extrudates formulated using design space: one simple process for both palatability and dissolution rate improvement. J Pharm Sci Elsevier Ltd. 2018;107:286–96.

    CAS  Google Scholar 

  148. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery — a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Mr. Renato Fernandes Feitosa for his assistance with the figures’ design.

Funding

This research was funded by the University of Brasilia (Edital DPI/UnB 03/2020).

Author information

Authors and Affiliations

Authors

Contributions

A.C.S. Ré and J.F. Martins contributed equally to the writing of the work. M. Cunha‐Filho. G.M. Gelfuso, C.P. Aires, and T. Gratieri participated in the conceptualization, revision, and editing of the text.

Corresponding author

Correspondence to Taís Gratieri.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Consent for publication

All authors consent to the publication of the work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ré, A.C.S., Martins, J.F., Cunha‐Filho, M. et al. New perspectives on the topical management of recurrent candidiasis. Drug Deliv. and Transl. Res. 11, 1568–1585 (2021). https://doi.org/10.1007/s13346-021-00901-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00901-0

Keywords

Navigation