Skip to main content

Advertisement

Log in

Evaluation of in vitro and in vivo anti-urolithiatic activity of silver nanoparticles containing aqueous leaf extract of Tragia involucrata

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present investigation is focused on exploring the anti-urolithiatic potential of aqueous leaf extract of Tragia involucrata (TIA) and its silver nanoparticles (AgNPs) and to quantify the total phenol, flavonoid, terpenoid and sterol contents present in TIA. Quantification results suggested TIA to be a rich source of phenol, flavonoid and terpenoid and less of sterol content. The AgNPs were synthesized by a simple green method using aqueous extract of T. involucrata. The formation of AgNPs was confirmed through UV spectroscopy, particle size analysis, zeta potential, X-ray diffraction and transmission electron microscopy. The in vitro struvite growth inhibitory activity of the extract was performed using a single gel diffusion method. Samples incorporated with higher concentration of 2% TIA and AgNPs (200 μg mL−1) exhibited potent crystal growth inhibitory activity which was further supported by the dissolution of crystals in gel medium. Calcium oxalate stone formation was induced in rats by the oral administration of ethylene glycol in water. Stone formation was assessed by increase in the levels of calcium and phosphorous in the urine and accumulation of nitrogenous substances like urea, creatinine in renal tissues and blood. Prophylactic treatment with TIA and AgNPs showed significant anti-urolithiatic activity with normalization of the mineral contents of the urine and serum samples. Histopathological analysis of the kidney of TIA- and AgNP-treated animals showed no CaOx deposits and a normal architecture of the kidney cells. We conclude that aqueous extract of T. involucrata and its AgNPs has potential for the treatment of patients with recurrent stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De-Yoreo JJ, Qiu SR, Hoyer JR. Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol. 2006;291:1123–31.

    Article  Google Scholar 

  2. Chauhan CK, Joshi MJ. Growth inhibition of struvite crystals in the presence of juice of Citrus medica Linn. Urol Res. 2008;36:265–8.

    Article  CAS  PubMed  Google Scholar 

  3. Chauhan CK, Joshi MJ. In vitro crystallization, characterization and growth-inhibitory study of urinary type struvite crystals. J Crystal Growth. 2013;362:330–7.

    Article  CAS  Google Scholar 

  4. Bichler KH, Eipper E, Naber K, Braun V, Zimmermann R, Lahme S. Urinary infection stones. Int J Antimicrob Agents. 2002;19:488–98.

    Article  CAS  PubMed  Google Scholar 

  5. Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol. 2008;15:115–20.

    Article  CAS  PubMed  Google Scholar 

  6. Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Series. 2007;5:126–36.

    Article  Google Scholar 

  7. Micali S, Grande M, Sighinolfi MC, De Came C, De Stefani S, Bianchi G. Medical therapy of urolithiasis. J Endourol. 2006;20:841–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mc Acteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol. 2008;28:200–13.

    Article  Google Scholar 

  9. Aswathi R, Pant I, Kulkarni G, Kikuchi IS, Pinto TA, Dua K, Malipeddi RV. Opportunities and challenges in nano-structure mediated drug delivery: where do we stand? Curr Nanomed. 2016;6:78–104.

    Article  Google Scholar 

  10. Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Durg Deliv Transl Res. 2016;6:511–8.

    Article  CAS  Google Scholar 

  11. Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of Mometasone furoate for topical delivery. Int J Pharm Investig. 2014;4:60–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swathy B. A review on metallic silver nanoparticles. IOSR J Pharm. 2014;4:38–44.

    Google Scholar 

  13. Nel A. Toxic potential of materials at the nano level. Sci. 2006;311:622–7.

    Article  CAS  Google Scholar 

  14. Kumari A, Guliani A, Singla R, Yadav R, Yadav SK. Silver nanoparticles synthesised using plant extracts show strong antibacterial activity. IET Nanobiotechnol. 2015;9:142–52.

    Article  PubMed  Google Scholar 

  15. Nayak D, Ashe S, Rauta RP, Nayak B. Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts. IET Nanobiotechnol. 2015;9:288–93.

    Article  PubMed  Google Scholar 

  16. Ahmed S, Saifullah, Babu LS. Green synthesis of silver nanoparticles using Azadirachta indica. J Radiat Res Appl Sci 2016; 9: 1–7.

  17. WHO. WHO traditional Medicine Strategy 2002–2005. World Health Organisation document. WHO/EDM/TRM/20021. World Health Organisation, Geneva; 2002.

  18. Satish H, Raman D, Kashama D, Shivananda BG, Shridhar KA. In vitro anti-lithatic activity study of Tribulus terrestris fruits and Boerhaavia diffusa roots. Pharm Lett. 2010;2:12–20.

    Google Scholar 

  19. Novaes Ada S, Mota DJ, Barison A, Veber CL, Negrao FJ, Kassuya CA, de Barros ME. Diuretic and antilithiasis activities of ethanolic extract from Piper amalago (Piperaceae). Phytomedicine. 2014;21:523–8.

    Article  PubMed  Google Scholar 

  20. Bayir Y, Halici Z, Keles MS, Colak S, Cakir A, Kaya Y, Akcay F. Helichrysum plicatum DC. sub. sp. plicatum extract as a preventive agent in experimentally induced urolithiasis model. J Ethnopharmacol. 2011;138:408–14.

    Article  PubMed  Google Scholar 

  21. Joshi CG, Gopal M, Kumari NS. Antitumor activity of hexane and ethyl acetate extracts of aerial parts of Tragia involucrata Linn. Int J Cancer Res. 2011;7:267–77.

    Article  Google Scholar 

  22. Farook MS, Atlee CW. Antidiabetic and hypolipidemic potential of Tragia involucrata Linn in Streptozotocin-nicotinamide induced type ii diabetic rats. Int J Pharm Pharm Sci. 2011;3:103–9.

    Google Scholar 

  23. Samy RP, Gopalakrishnakone P, Sarumathi M, Ignacimuthu S. Wound healing potential of Tragia involucrata extract in rats. Fitoterapia. 2006;77:300–2.

    Article  Google Scholar 

  24. Palani S, Nirmal S, Gokulan R. Evaluation of nephroprotective and antioxidant potential of Tragia involucrata. Drug Invent. 2009;1:55–8.

    Google Scholar 

  25. Saniasiaya J, Salim R, Mohamad I, Harun A. Antifungal effect of Malaysian Aloe vera leaf extract on selected fungal species of pathogenic otomycosis species in in vitro culture medium. Oman Med J. 2017;32:41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meshram GG, Kumar A, Rizvi W, Tripathi CD, Khan RA. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J Tradit Complement Med 2015; 6:172–175.

  27. Goswami N, Chatterjee S. Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare Mill. (fennel) seed extracts. Biomed Res Int. 2014; doi:10.1155/2014/582767.

    Google Scholar 

  28. Harborne JB. Phytochemical methods: a guide to modern techniques of plant analysis. 2nd ed. New York: Chapman and Hall; 1984.

    Book  Google Scholar 

  29. Das M, Himaja M, Nambiraj AN, Rajan R. Phytochemical analysis, antioxidant and in vitro growth inhibition of struvite crystals by Ipomoea eriocarpa leaf extracts. J Food Bio Chem. 2016;40:148–60.

    Article  CAS  Google Scholar 

  30. Kumar HA, Mandal BK, Kumar K, Maddinedi SB, Sai Kumar T, Madhiyazhagan P, Ghosh AR. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:13–8.

    Article  Google Scholar 

  31. Das M, Himaja M. Antiurolithiatic activity of ethanol leaf extract of Ipomoea eriocarpa against ethylene glycol induced urolithiasis in male wistar rats. Indian J Pharmacol. 2016;48:270–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dhara AK, Suba V, Sen T, Pal S, Nag Chaudhuri AK. Preliminary studies on the anti-inflammatory and analgesic activity of the methanolic fraction of the root extract of Tragia involucrata Linn. J Ethnopharmacol. 2000;72:265–8.

    Article  CAS  PubMed  Google Scholar 

  33. Al Anazi SA, Jamir Anwar MD, Afroz Ahmad MD. Hepatoprotective and antioxidant activity of Tragia involucrata root extracts against CCl4 induced hepatotoxicity in rats. Pharm Lett. 2015;7:146–52.

    Google Scholar 

  34. Venkat Rao N, Benoy K, Hemamalini K, Shanta Kumar SM, Satyanarayana S. Pharmacological evaluation of root extracts of Tragia involucrata. Pharmacologyonline. 2007;2:236–44.

    Google Scholar 

  35. Tiwari DK, Jin T, Behari J. Dose-dependent in vivo toxicity assesment of silver nanoparticle in wistar rats. Toxicol Mech Methods. 2011;21:13–24.

    Article  CAS  PubMed  Google Scholar 

  36. Pavlovschi I, Goncear V, Scutari C. Chronic toxicity of silver nanoparticles. In: Sontea V, Tiginyanu I, editors. IFMBE Proceedings: 3rd International Conference on Nanotechnologies and Biomedical Engineering. Singapore: Springer; 2015. p. 23–6.

    Google Scholar 

  37. Dua K, Malipeddi VR, Madan J, Gupta G, Chakravarthi S, Aswathi R, Kikuchi IS, Pinto TA. Norfloxacin and metronidazole topical formulations for effective treatment of bacterial infections and burn wounds. Interv Med Appl Sci. 2016;8:68–76.

    PubMed  PubMed Central  Google Scholar 

  38. Dua K, Chakravarthi S, Kumar D, Sheshala R, Gupta G. Formulation, characterization, in vitro, in vivo, and histopathological evaluation of transdermal drug delivery containing norfloxacin and Curcuma longa. Int J Pharm Investig. 2013;3:183–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32:79–84.

    Article  PubMed  Google Scholar 

  40. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocessing. 2014;1:1–10.

    Article  Google Scholar 

  41. Tania A, Cristina DD, Ana Paula SM, Maria L, Antonio L, Caden S. Evaluation of the antiurolithiatic activity of the extract of Costus spiralis roscoe in rats. J Ethnopharmacol. 1999;66:193–8.

    Article  Google Scholar 

  42. Panigrahi NP, Dey S, Sahoo M, Choudhary SS, Mahajan S. Alteration in oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis. Biomed Pharmacother. 2016;84:1524–32.

    Article  CAS  PubMed  Google Scholar 

  43. Bouanani S, Henchiri C, Migianu-Griffoni E, Aouf N, Lecouvey M. Pharmacological and toxicological effects of Paronychia argentea in experimental calcium oxalate nephrolithiasis in rats. J Ethnopharmacol. 2010;129:38–45.

    Article  CAS  PubMed  Google Scholar 

  44. Marshall RW, Cochran M, Hodgkinson A. Relationships between calcium and oxalic acid intake in the diet and their excretion in the urine of normal and renal-stone-forming subjects. Clin Sci. 1972;43:91–9.

    Article  CAS  PubMed  Google Scholar 

  45. Divakar K, Pawar TA, Chandrasekhar SB, Dighe SB, Divakar G. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem Toxicol. 2010;48:1013–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to VIT University, Vellore, India, for providing financial support and necessary facilities required to perform the work. The authors are grateful to P.B Histopathology Lab, Chennai, India, for carrying out the histopathology studies and RM Medical Centre and Hospital, Vellore, India, for performing the biochemical analysis of the urine and serum samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himaja Malipeddi.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, V., Das, M., Raj N, A. et al. Evaluation of in vitro and in vivo anti-urolithiatic activity of silver nanoparticles containing aqueous leaf extract of Tragia involucrata . Drug Deliv. and Transl. Res. 7, 439–449 (2017). https://doi.org/10.1007/s13346-017-0363-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0363-x

Keywords

Navigation