Skip to main content

Advertisement

Log in

Nanotechnology for CNS delivery of bio-therapeutic agents

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to disease-modifying effects. With change in population demographics, incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McGonigle P. Peptide therapeutics for CNS indications. Biochem Pharmacol. 2012;83(5):559–66.

    Article  PubMed  CAS  Google Scholar 

  2. Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J. Current advances in delivery of biotherapeutics across the blood–brain barrier. Curr Drug Discov Technol. 2011;8(2):87–101.

    Article  PubMed  CAS  Google Scholar 

  3. Garcel A, Martel S, Carrupt P, Doelker E, Delie F. In vitro blood brain barrier models as a screening tool for colloidal drug delivery systems and other nanosystems. Int J Biomed Nanosci Nanotechnol. 2010;1(2):133–63.

    Article  CAS  Google Scholar 

  4. Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem. 2008;19(7):1327–38.

    Article  PubMed  CAS  Google Scholar 

  5. Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev. 2012;64(10):943–52.

    Article  PubMed  CAS  Google Scholar 

  6. Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv. 2009;6(3):211–25.

    Article  PubMed  CAS  Google Scholar 

  7. Dietz GP, Bahr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci. 2004;27(2):85–131.

    Article  PubMed  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    Article  PubMed  CAS  Google Scholar 

  9. Van RI, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res. 2011;28(3):456–71.

    Article  CAS  Google Scholar 

  10. Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med. 2006;6(34):139–43.

    PubMed  Google Scholar 

  11. Musacchio T, Torchilin VP. Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci. 2011;16:1388–412.

    Article  PubMed  CAS  Google Scholar 

  12. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv. 2009;6(10):1017–32.

    Article  PubMed  CAS  Google Scholar 

  13. Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev. 1999;36(2–3):299–321.

    Article  PubMed  CAS  Google Scholar 

  14. Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target. 2008;16(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14(1):1–12.

    Article  PubMed  Google Scholar 

  16. Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced Brain Delivery of the Opioid Peptide DAMGO in Glutathione PEGylated Liposomes: A Microdialysis Study. Mol Pharm 2012.

  17. Zara GP, Cavalli R, Bargoni A, Fundaro A, Vighetto D, Gasco MR. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target. 2002;10(4):327–35.

    Article  PubMed  CAS  Google Scholar 

  18. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504.

    Article  PubMed  CAS  Google Scholar 

  19. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59(6):454–77.

    Article  PubMed  CAS  Google Scholar 

  20. Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93(8):1993–2008.

    Article  PubMed  CAS  Google Scholar 

  21. Di SA, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer's disease treatment. Expert Opin Drug Deliv. 2011;8(5):581–603.

    Article  CAS  Google Scholar 

  22. Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2005;2(4):297–310.

    Article  PubMed  CAS  Google Scholar 

  23. Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol. 2010;27(7):260–73.

    Article  PubMed  CAS  Google Scholar 

  24. Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347(1–2):93–101.

    Article  PubMed  CAS  Google Scholar 

  25. Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. 2006;3(2):219–32.

    Article  PubMed  CAS  Google Scholar 

  26. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700.

    Article  PubMed  CAS  Google Scholar 

  27. Huwyler J, Yang J, Pardridge WM. Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther. 1997;282(3):1541–6.

    PubMed  CAS  Google Scholar 

  28. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  PubMed  CAS  Google Scholar 

  29. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317(3):1246–53.

    Article  PubMed  CAS  Google Scholar 

  30. Fortin D, Gendron C, Boudrias M, Garant MP. Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in the treatment of cerebral metastasis. Cancer. 2007;109(4):751–60.

    Article  PubMed  CAS  Google Scholar 

  31. Becker I, Becker KF, Meyermann R, Hollt V. The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol. 1991;82(6):516–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol. 1997;40(Suppl):S13–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, Nagai Y, et al. In vivo evaluation of P-glycoprotein function at the blood–brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther. 2006;316(2):647–53.

    Article  PubMed  CAS  Google Scholar 

  34. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.

    Article  PubMed  CAS  Google Scholar 

  35. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  PubMed  CAS  Google Scholar 

  36. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  PubMed  CAS  Google Scholar 

  37. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  38. Dhuria SV, Hanson LR, Frey II WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    PubMed  CAS  Google Scholar 

  39. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  PubMed  CAS  Google Scholar 

  40. Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like peptide-1 antagonist exendin(9–39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469–75.

    Article  PubMed  CAS  Google Scholar 

  41. Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986; 63(3):461–473.

    Google Scholar 

  42. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  PubMed  CAS  Google Scholar 

  43. Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Journal of Drug Targeting. 2010;18(3):179–90.

    Article  PubMed  CAS  Google Scholar 

  44. Clerico DM, Lanza DC, To WC. Handbook of olfaction and gustation, 2nd edn. New York: Marcel Dekker, Inc.; 2003. p. 1–16.

  45. Gray H. Gray’s anatomy, 15th revised edition. New York: BountyBooks; 1978.

  46. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  47. Bradbury MWB, Cserr HF. Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics . In: Johnston MG, editor. Experimental Biology of lymphatic circulation. Amsterdam and New York; 1985. p. 355–391.

  48. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6.

    Article  PubMed  CAS  Google Scholar 

  49. Dhanda DS, FreyWH II, Leopold D, Kompella UB. Approaches for drug deposition in the human olfactory epithelium. Drug Delivery Technology. 2005;5:64–72.

    CAS  Google Scholar 

  50. Kumar ATC, Umberkoman B, Saini KD, David GFX. Uptake of radioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labelled oestradiol and progesterone. Curr Sci. 1974;43:435–9.

    CAS  Google Scholar 

  51. Sakane T, Akizuki M, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol. 1994;46(5):378–9.

    Article  PubMed  CAS  Google Scholar 

  52. Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995;47(5):379–81.

    Article  PubMed  CAS  Google Scholar 

  53. Wang Q, Chen G, Zeng S. Pharmacokinetics of Gastrodin in rat plasma and CSF after i.n. and i.v. Int J Pharm. 2007;341(1–2):20–5.

    Article  PubMed  CAS  Google Scholar 

  54. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.

    Article  PubMed  CAS  Google Scholar 

  55. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96(3):473–83.

    Article  PubMed  CAS  Google Scholar 

  56. Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38.

    PubMed  Google Scholar 

  57. Lee VHL, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Advanced Drug Delivery Reviews. 1989;4(2):171–207.

    Article  Google Scholar 

  58. Harris AS, Nilsson IM, Wagner ZG, Alkner U. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J Pharm Sci. 1986;75(11):1085–8.

    Article  PubMed  CAS  Google Scholar 

  59. Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22(1):86–93.

    Article  PubMed  CAS  Google Scholar 

  60. Ozsoy Y. Handbook of particulate drug delivery. In: Kumar MNV, editor. California: American Scientific Publisher; 2008. p. 143.

  61. Wang X, He H, Leng W, Tang X. Evaluation of brain-targeting for the nasal delivery of estradiol by the microdialysis method. Int J Pharm. 2006;317(1):40–6.

    Article  PubMed  CAS  Google Scholar 

  62. Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res. 2004;21(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  63. Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, et al. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin. Eur J Pharm Sci. 2001;13(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  64. Graff CL, Pollack GM. P-Glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20(8):1225–30.

    Article  PubMed  CAS  Google Scholar 

  65. Kravtzoff R, Appelqvist T, Haddouk H, Manciaux X, Cholet G, De M, I, et al. Preclinical toxicology of biovectorTM nanoparticles: part II, local tolerance, genetic toxicology and pharmacokinetics. Toxicology Letters. 1998; 95[1001]: 117.

  66. Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121(3):156–67.

    Article  PubMed  CAS  Google Scholar 

  67. Gao X, Chen J, Tao W, Zhu J, Zhang Q, Chen H, et al. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm. 2007;340(1–2):207–15.

    Article  PubMed  CAS  Google Scholar 

  68. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci. 2010;99(4):1745–61.

    PubMed  CAS  Google Scholar 

  69. Hansom LR, Frey WH II, Hoekman JD, Pohl J. Lipid growth factor formulations. In: EPO, editor. 2008.

  70. Hanson LR, Fine JM, Hoekman JD, Nguyen TM, Burns RB, Martinez PM, et al. Intranasal delivery of growth differentiation factor 5 to the central nervous system. Drug Deliv. 2012;19(3):149–54.

    Article  PubMed  CAS  Google Scholar 

  71. Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.

    Article  PubMed  CAS  Google Scholar 

  72. Joubert J, Geldenhuys WJ, Van der Schyf CJ, Oliver DW, Kruger HG, Govender T, et al. Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem. 2012;7(3):375–84.

    Article  PubMed  CAS  Google Scholar 

  73. Bodor N, Prokai L, Wu WM, Farag H, Jonalagadda S, Kawamura M, et al. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science. 1992;257(5077):1698–700.

    Article  PubMed  CAS  Google Scholar 

  74. Wu J, Yoon SH, Wu WM, Bodor N. Synthesis and biological evaluations of brain-targeted chemical delivery systems of [Nva2]-TRH. J Pharm Pharmacol. 2002;54(7):945–50.

    Article  PubMed  CAS  Google Scholar 

  75. Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–39.

    Article  PubMed  CAS  Google Scholar 

  76. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.

    Article  PubMed  CAS  Google Scholar 

  77. Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood–brain barrier drug delivery system. J Pharmacol Exp Ther. 1996;279(1):77–83.

    PubMed  CAS  Google Scholar 

  78. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106(4):1534–44.

    Article  PubMed  CAS  Google Scholar 

  79. Martini A, Muggetti L, Warchol MP. Nasal and pulmonary drug delivery systems. Expert Opinion on Therapeutic Patents. 2000;10(3):315–23.

    Article  CAS  Google Scholar 

  80. Romeo VD, deMeireles JC, Gries WJ, Xia WJ, Sileno AP, Pimplaskar HK, et al. Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv Drug Deliv Rev. 1998;29(1–2):117–33.

    PubMed  Google Scholar 

  81. Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187–95.

    Article  PubMed  CAS  Google Scholar 

  82. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012. 46(1–3):3–26

  83. Mackie C, Brewster M, Noppe M, Loftsson T, Lampo A. The Use of Solubilizing Excipients and Approaches to Generate Toxicology Vehicles for Contemporary Drug Pipelines. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. New York: Springer; 2007. p. 221.

  84. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.

    Article  PubMed  CAS  Google Scholar 

  85. Strasser JF, Fung LK, Eller S, Grossman SA, Saltzman WM. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther. 1995;275(3):1647–55.

    PubMed  CAS  Google Scholar 

  86. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.

    Article  PubMed  CAS  Google Scholar 

  87. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv. 2009;6(10):1017–32.

    Article  PubMed  CAS  Google Scholar 

  88. Dahm P, Nitescu P, Appelgren L, Curelaru I. Efficacy and technical complications of long-term continuous intraspinal infusions of opioid and/or bupivacaine in refractory nonmalignant pain: a comparison between the epidural and the intrathecal approach with externalized or implanted catheters and infusion pumps. Clin J Pain. 1998;14(1):4–16.

    Article  PubMed  CAS  Google Scholar 

  89. Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res. 1995;680(1–2):196–206.

    Article  PubMed  CAS  Google Scholar 

  90. Ilias W, Todoroff B. Optimizing pain control through the use of implantable pumps. Med Devices (Auckl ). 2008;1:41–7.

    Article  Google Scholar 

  91. Victorov IV, Prass K, Dirnagl U. Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin. Brain Res Brain Res Protoc. 2000;5(2):135–9.

    Article  PubMed  CAS  Google Scholar 

  92. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun. 2006;340(4):1085–90.

    Article  PubMed  CAS  Google Scholar 

  93. Liu XF, Fawcett JR, Hanson LR, Frey WH. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13(1):16–23.

    Article  PubMed  Google Scholar 

  94. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6.

    Article  PubMed  CAS  Google Scholar 

  95. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. 1996;93(24):14164–9.

    Article  PubMed  CAS  Google Scholar 

  96. Alcalay RN, Giladi E, Pick CG, Gozes I. Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett. 2004;361(1–3):128–31.

    Article  PubMed  CAS  Google Scholar 

  97. Dhuria SV, Hanson LR, Frey WH. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci. 2009;98(7):2501–15.

    Article  PubMed  CAS  Google Scholar 

  98. Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, et al. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 2011;25(9):3208–18.

    Article  PubMed  CAS  Google Scholar 

  99. Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008;131(Pt 12):3311–34.

    Article  PubMed  Google Scholar 

  100. Fliedner S, Schulz C, Lehnert H. Brain uptake of intranasally applied radioiodinated leptin in Wistar rats. Endocrinology. 2006;147(5):2088–94.

    Article  PubMed  CAS  Google Scholar 

  101. Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.

    Article  PubMed  CAS  Google Scholar 

  102. Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Journal of Drug Targeting. 2010;18(3):179–90.

    Article  PubMed  CAS  Google Scholar 

  103. Ma YP, Ma MM, Ge S, Guo RB, Zhang HJ, Frey WH, et al. Intranasally delivered TGF-beta1 enters brain and regulates gene expressions of its receptors in rats. Brain Res Bull. 2007;74(4):271–7.

    Article  PubMed  CAS  Google Scholar 

  104. Yu YP, Xu QQ, Zhang Q, Zhang WP, Zhang LH, Wei EQ. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett. 2005;387(1):5–10.

    Article  PubMed  CAS  Google Scholar 

  105. Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, et al. Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett. 2009;449(2):108–11.

    Article  PubMed  CAS  Google Scholar 

  106. Draghia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther. 1995;2(6):418–23.

    PubMed  CAS  Google Scholar 

  107. Jerusalmi A, Morris-Downes MM, Sheahan BJ, Atkins GJ. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol Ther. 2003;8(6):886–94.

    Article  PubMed  CAS  Google Scholar 

  108. Oh YK, Kim JP, Hwang TS, Ko JJ, Kim JM, Yang JS, et al. Nasal absorption and biodistribution of plasmid DNA: an alternative route of DNA vaccine delivery. Vaccine. 2001;19(31):4519–25.

    Article  PubMed  CAS  Google Scholar 

  109. Kim ID, Kim SW, Lee JK. Gene knockdown in the olfactory bulb, amygdala, and hypothalamus by intranasal siRNA administration. Korean J Anat. 2009;42:285–92.

    Google Scholar 

  110. Renner DB, Frey WH, Hanson LR. Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci Lett. 2012;513(2):193–7.

    Article  PubMed  CAS  Google Scholar 

  111. Danielyan L, Schafer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res. 2011;14(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  112. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    Article  PubMed  CAS  Google Scholar 

  113. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, L., Yadav, S. & Amiji, M. Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv. and Transl. Res. 3, 336–351 (2013). https://doi.org/10.1007/s13346-013-0133-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0133-3

Keywords

Navigation