Skip to main content
Log in

Advances in basic research on glucagon and alpha cells

  • Mini-Review
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The regulation of plasma amino acid levels by glucagon in humans first attracted the attention of researchers in the 1980s. Recent basic research using animal models of glucagon deficiency suggested that a major physiological role of glucagon is the regulation of amino acid metabolism rather than to increase blood glucose levels. In this regard, novel feedback regulatory mechanisms that are mediated by glucagon and amino acids have recently been described between islet alpha cells and the liver. Increasingly, hyperglucagonemia in humans with diabetes and/or nonalcoholic fatty liver diseases is reported to likely be a compensatory response to hepatic glucagon resistance. Severe glucagon resistance due to a glucagon receptor mutation in humans causes hyperaminoacidemia and islet alpha cell expansion combined with pancreatic hypertrophy. Notably, a recent report showed that the restoration of glucagon resistance by liver transplantation resolved not only hyperglucagonemia, but also pancreatic hypertrophy and other metabolic disorders. The mechanisms that regulate islet cell proliferation by amino acids largely remain unelucidated. Clarification of such mechanisms will increase our understanding of the pathophysiology of diseases related to glucagon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimball CP, Murlin JR. Aqueous extracts of pancreas. III. Some precipitation reactions of insulin. J Biol Chem. 1923;58(1):337–46.

    Article  CAS  Google Scholar 

  2. Mallinson CN, Bloom SR, Warin AP, Salmon PR, Cox B. A glucagonoma syndrome. Lancet. 1974;2(7871):1–5. https://doi.org/10.1016/s0140-6736(74)91343-9.

    Article  CAS  PubMed  Google Scholar 

  3. Unger RH, Ohneda A, Aguilar-Parada E, Eisentraut AM. The role of aminogenic glucagon secretion in blood glucose homeostasis. J Clin Invest. 1969;48(5):810–22. https://doi.org/10.1172/JCI106039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boden G, Master RW, Rezvani I, Palmer JP, Lobe TE, Owen OE. Glucagon deficiency and hyperaminoacidemia after total pancreatectomy. J Clin Investig. 1980;65(3):706–16. https://doi.org/10.1172/jci109717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boden G, Rezvani I, Owen OE. Effects of glucagon on plasma amino-acids. J Clin Investig. 1984;73(3):785–93. https://doi.org/10.1172/jci111272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furuta M, Yano H, Zhou A, Rouille Y, Holst JJ, Carroll R, et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci USA. 1997;94(13):6646–51. https://doi.org/10.1073/pnas.94.13.6646.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gelling RW, Du XQ, Dichmann DS, Romer J, Huang H, Cui L, et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA. 2003;100(3):1438–43. https://doi.org/10.1073/pnas.0237106100.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y, Wang M-Y, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011;60(2):391–7. https://doi.org/10.2337/db10-0426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Investig. 2012;122(1):4–12. https://doi.org/10.1172/jci60016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Unger RH, Eisentraut AM, Mc CM, Madison LL. Glucagon antibodies and an immunoassay for glucagon. J Clin Invest. 1961;40(7):1280–9. https://doi.org/10.1172/JCI104357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jun LS, Millican RL, Hawkins ED, Konkol DL, Showalter AD, Christe ME, et al. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production. Diabetes. 2015;64(3):819–27. https://doi.org/10.2337/db14-1052.

    Article  CAS  PubMed  Google Scholar 

  12. Gagnon J, Mayne J, Chen A, Raymond A, Woulfe J, Mbikay M, Chretien M. PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides. Life Sci. 2011;88(5–6):212–7. https://doi.org/10.1016/j.lfs.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

  13. Wei T, Cui X, Jiang Y, Wang K, Wang D, Li F, et al. Glucagon acting at the GLP-1 receptor contributes to beta-cell regeneration induced by glucagon receptor antagonism in diabetic mice. Diabetes. 2023;72(5):599–610. https://doi.org/10.2337/db22-0784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi Y, Yamamoto M, Mizoguchi H, Watanabe C, Ito R, Yamamoto S, et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet alpha-cells but not of intestinal L-cells. Mol Endocrinol. 2009;23(12):1990–9. https://doi.org/10.1210/me.2009-0296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iida A, Seino Y, Fukami A, Maekawa R, Yabe D, Shimizu S, et al. Endogenous GIP ameliorates impairment of insulin secretion in proglucagon-deficient mice under moderate beta cell damage induced by streptozotocin. Diabetologia. 2016;59(7):1533–41. https://doi.org/10.1007/s00125-016-3935-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ali S, Lamont BJ, Charron MJ, Drucker DJ. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Investig. 2011;121(5):1917–29. https://doi.org/10.1172/jci43615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi Y. Metabolic impact of glucagon deficiency. Diabetes Obes Metab. 2011;13:151–7.

    Article  CAS  PubMed  Google Scholar 

  18. Damond N, Thorel F, Moyers JS, Charron MJ, Vuguin PM, Powers AC, Herrera PL. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual beta-cells persist. Elife. 2016. https://doi.org/10.7554/eLife.13828.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chambers AP, Sorrell JE, Haller A, Roelofs K, Hutch CR, Kim KS, et al. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab. 2017;25(4):927-34 e3. https://doi.org/10.1016/j.cmet.2017.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Longuet C, Robledo AM, Dean ED, Dai C, Ali S, McGuinness I, et al. Liver-specific disruption of the murine glucagon receptor produces alpha-cell hyperplasia evidence for a circulating alpha-cell growth factor. Diabetes. 2013;62(4):1196–205. https://doi.org/10.2337/db11-1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okamoto H, Kim J, Aglione J, Lee J, Cavino K, Na E, et al. Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys. Endocrinology. 2015;156(8):2781–94. https://doi.org/10.1210/en.2015-1011.

    Article  CAS  PubMed  Google Scholar 

  22. Solloway MJ, Madjidi A, Gu C, Eastham-Anderson J, Clarke HJ, Kljavin N, et al. Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of alpha-cell mass. Cell Rep. 2015;12(3):495–510. https://doi.org/10.1016/j.celrep.2015.06.034.

    Article  CAS  PubMed  Google Scholar 

  23. Lam CJ, Rankin MM, King KB, Wang MC, Shook BC, Kushner JA. Glucagon receptor antagonist-stimulated alpha-cell proliferation is severely restricted with advanced age. Diabetes. 2019;68(5):963–74. https://doi.org/10.2337/db18-1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S, et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell. 2014;159(3):691–6. https://doi.org/10.1016/j.cell.2014.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ben-Zvi D, Barrandon O, Hadley S, Blum B, Peterson QP, Melton DA. Angptl4 links alpha-cell proliferation following glucagon receptor inhibition with adipose tissue triglyceride metabolism. Proc Natl Acad Sci USA. 2015;112(50):15498–503. https://doi.org/10.1073/pnas.1513872112.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamoto H, Cavino K, Na E, Krumm E, Kim S, Stevis PE, et al. Angptl4 does not control hyperglucagonemia or alpha-cell hyperplasia following glucagon receptor inhibition. Proc Natl Acad Sci USA. 2017;114(10):2747–52. https://doi.org/10.1073/pnas.1620989114.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, et al. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes. 2012;61(1):74–84. https://doi.org/10.2337/db11-0739.

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, MacDougall ML, McDowell MT, Xi L, Wei R, Zavadoski WJ, et al. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. Bmc Genomics. 2011. https://doi.org/10.1186/1471-2164-12-281.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dean ED, Li M, Prasad N, Wisniewski SN, Von Deylen A, Spaeth J, et al. Interrupted glucagon signaling reveals hepatic alpha cell axis and role for L-glutamine in alpha cell proliferation. Cell Metabol. 2017;25(6):1362. https://doi.org/10.1016/j.cmet.2017.05.011.

    Article  CAS  Google Scholar 

  30. Kim J, Okamoto H, Huang Z, Anguiano G, Chen S, Liu Q, et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic alpha cell hyperplasia in mice. Cell Metab. 2017;25(6):1348. https://doi.org/10.1016/j.cmet.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayashi Y, Seino Y. Regulation of amino acid metabolism and alpha-cell proliferation by glucagon. J Diabetes Investig. 2018;9(3):464–72. https://doi.org/10.1111/jdi.12797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Capozzi ME, D’Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab. 2022;34(11):1654–74. https://doi.org/10.1016/j.cmet.2022.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wewer Albrechtsen NJ, Faerch K, Jensen TM, Witte DR, Pedersen J, Mahendran Y, et al. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia. 2018;61(3):671–80. https://doi.org/10.1007/s00125-017-4535-5.

    Article  CAS  PubMed  Google Scholar 

  34. Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sorensen M, Suppli MP, Janah L, et al. The liver-alpha-cell axis and type 2 diabetes. Endocr Rev. 2019;40(5):1353–66. https://doi.org/10.1210/er.2018-00251.

    Article  PubMed  Google Scholar 

  35. Haedersdal S, Andersen A, Knop FK, Vilsboll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol. 2023;19(6):321–35. https://doi.org/10.1038/s41574-023-00817-4.

    Article  CAS  PubMed  Google Scholar 

  36. Boland ML, Laker RC, Mather K, Nawrocki A, Oldham S, Boland BB, et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis. Nat Metab. 2020;2(5):413–31. https://doi.org/10.1038/s42255-020-0209-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Zhao L, Singh R, Ham JN, Fadoju DO, Bean LJH, et al. The first pediatric case of glucagon receptor defect due to biallelic mutations in GCGR is identified by newborn screening of elevated arginine. Mol Genet Metab Rep. 2018;17:46–52. https://doi.org/10.1016/j.ymgmr.2018.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu R. Pancreatic alpha-cell hyperplasia: facts and myths. J Clin Endocrinol Metab. 2014;99(3):748–56. https://doi.org/10.1210/jc.2013-2952.

    Article  CAS  PubMed  Google Scholar 

  39. Esquivel CO, Marino IR, Fioravanti V, Van Thiel DH. Liver transplantation for metabolic disease of the liver. Gastroenterol Clin North Am. 1988;17(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  40. Zabaleta N, Unzu C, Weber ND, Gonzalez-Aseguinolaza G. Gene therapy for liver diseases - progress and challenges. Nat Rev Gastroenterol Hepatol. 2023;20(5):288–305. https://doi.org/10.1038/s41575-022-00729-0.

    Article  PubMed  Google Scholar 

  41. Robbins J, Halegoua-DeMarzio D, Basu Mallick A, Vijayvergia N, Ganetzky R, Lavu H, et al. Liver transplantation in a woman with Mahvash disease. N Engl J Med. 2023;389(21):1972–8. https://doi.org/10.1056/NEJMoa2303226.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work was supported in part by the Japan Society for the Promotion of Science (KAKENHI Grant Number 22H03508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Hayashi.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest associated with this manuscript.

Research involves human and animal participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y. Advances in basic research on glucagon and alpha cells. Diabetol Int (2024). https://doi.org/10.1007/s13340-024-00696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13340-024-00696-8

Keywords

Navigation