Skip to main content
Log in

Random distribution of nucleotide polymorphism throughout the genome of tomato-infecting begomovirus species occurring in India: implication in PCR based diagnosis

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Multiple begomovirus species are known to cause leaf curl disease in tomato in India. In order to develop specific and generic PCR based diagnostics for the tomato-infecting begomoviruses, in this study, we attempted to design primers initially based on the multiple alignment of the complete genome sequence of DNA-A component. However, the specific nucleotide stretches adequate for preparing specific primers could not be obtained. Alternatively, the online Primer-BLAST tool that offers designing of target-specific PCR primers was attempted to prepare specific primers targeting three clones (DNA-A) of tomato-infecting begomovirus species (Tomato leaf curl New Delhi virus, Tomato leaf curl Palampur virus and Tomato leaf curl Joydebpur virus) selected based on their sequence identity and phylogenetic relatedness. The primers derived from Primer-BLAST tool showed high level of cross-reaction among these begomovirus species and therefore were not able to differentiate these target begomovirus species. In order to understand the reason of cross-reactivity further sequence analysis revealed the high occurrence of single nucleotide variations (SNVs) compared to the multi-nucleotide stretches. There was no SNV hot-spot in the genome, rather the SNVs were randomly distributed throughout the genome of these begomovirus species. This pattern of nucleotide diversities among these tomato-infecting begomoviruses seriously implicated on developing specific PCR diagnostics. On the contrary, sequence analysis showed high sequence conservancy, which enabled to develop a generic PCR diagnostic for these begomoviruses. Our study, thus showed that the genome sequence diversity pattern among the tomato-infecting begomoviruses in India poses challenges in developing PCR based specific diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali-Shtayeh MS, Jamous RM, Mallah OB, Abu-Zeitoun SY. Molecular characterization of watermelon chlorotic stunt virus (WmCSV) from Palestine. Viruses. 2014;6:2444–62. https://doi.org/10.3390/v6062444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG, Duffy S, Murilo-Zerbini F. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol. 2017. https://doi.org/10.1093/ve/vex005.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bela-ong DB, Bajet NB. Molecular detection of whitefly-transmissible geminiviruses (Family Geminiviridae, Genus Begomovirus) in the Philippines. Philipp J Sci. 2007;136(2):87–101.

    Google Scholar 

  4. Borah BK, Dasgupta I. Begomovirus research in India: a critical appraisal and the way ahead. J Biosci. 2012;37:791–806. https://doi.org/10.1007/s12038-012-9238-y.

    Article  CAS  PubMed  Google Scholar 

  5. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford IA. Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology. 2003;312:106–21. https://doi.org/10.1016/s0042-6822(03)00200-9.

    Article  CAS  PubMed  Google Scholar 

  6. Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N. Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology. 2004;324:462–74. https://doi.org/10.1016/j.virol.2004.03.041.

    Article  CAS  PubMed  Google Scholar 

  7. Briddon RW, Markham PG. Universal primers for the PCR amplification of dicot-infecting geminiviruses. Mol Biotechnol. 1994;1:202–5. https://doi.org/10.1007/BF02921559.

    Article  CAS  PubMed  Google Scholar 

  8. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JCF, Fiallo-Olive E, Briddon RW, Hernandez-Zepeda H, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani XX. A Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol. 2015;160:1593–619. https://doi.org/10.1007/s00705-015-2398-y.

    Article  CAS  PubMed  Google Scholar 

  9. Butter NS, Rataul HS. Nature and extent of losses in tomatoes due to tomato leaf curl virus transmitted by whitefly, Bemisia tabaci (Aleyrodidae: Hemiptera). Indian J Ecol. 1981;8:299–300.

    Google Scholar 

  10. Danks C, Barker I. On-site detection of plant pathogens using lateral-flow devices. EPPO Bull. 2008;30(3–4):421–6.

    Google Scholar 

  11. Deng DP, McGrath F, Robinson DJ, Harrison BD. Detection and differentiation of whitefly transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Ann Appl Biol. 1994;125(2):327–36. https://doi.org/10.1111/j.1744-7348.1994.tb04973.x.

    Article  CAS  Google Scholar 

  12. Devaraja GP, Sunitha SN, Narayanaswamy K, Karande A, Muniyappa V, Savithri HS. Production of monoclonal antibodies to Tomato leaf curl Bangalore virus. Ann Appl Biol. 2004;144:333–8. https://doi.org/10.1111/j.1744-7348.2004.tb00348.x.

    Article  CAS  Google Scholar 

  13. Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian A. Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Virol. 1993;74:147–51. https://doi.org/10.1099/0022-1317-74-1-147.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandes FR, Albuquerque LCD, Inoue-Nagata AK. Development of a species-specific detection method for three Brazilian tomato begomoviruses. Trop Plant Pathol. 2010;35:43–7.

    Article  Google Scholar 

  15. Hannum S, Aceh RM, Elimasni. Begomovirus detection on diseased chili plant (Capsicum annum L.) in Tanah Karo North Sumatera with PCR techniques. Earth Environ Sci 2019;305”012057. doi:https://doi.org/10.1088/1755-1315/305/1/012057

  16. Howarth AJ, Caton J, Bossert M, Goodman RM. Nucleotide sequence for Bean golden mosaic virus and a model for gene regulation in the geminivirus. Proc Natl Acad Sci USA. 1985;82:3572–6.

    Article  CAS  Google Scholar 

  17. Kalloo G. Leaf curl virus of tomato and chili in India. In: Proceeding of the Phase I final workshop of the South Asian vegetable research networks. January 23–28, 1996, p. 242–259. Kathmandu, Nepal.

  18. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan JA. Detection of tomato leaf curl gemini virus in its vector Bemisia tabaci. Indian J Exp Biol. 2000;38:512–5.

    CAS  PubMed  Google Scholar 

  20. Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GPM, Crespi S, Gronenborn B. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucl Acids Res. 1991;19:6763–9. https://doi.org/10.1093/nar/19.24.6763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavanya R, Arun V. Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Sci Rep. 2021;11:14203.

    Article  CAS  Google Scholar 

  22. Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW. Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae) - definition of a distinct class of begomovirus-associated satellites. Front Microbiol. 2016;7:162. https://doi.org/10.3389/fmicb.2016.00162.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malathi VG, Renukadevi P, Chakraborty S, Biswas KK, Roy A, Sivalingam PN. Begomoviruses and their satellites occurring in India: distribution, diversity and pathogenesis. In: Mandal B, Rao GP, Baranwal VK, Jain RK, editors. A century of plant virology in India, Singapore: Springer; 2017, p. 75–177. doi: https://doi.org/10.1007/978-981-10-5672-7_5

  24. Maruthi MN, Rekha AR, Mirza SH, Alam SN, Colvin J. PCR-based detection and partial genome sequencing indicate high genetic diversity in Bangladeshi begomoviruses and their whitefly vector. Bemisia Tabaci Virus Genes. 2007;34(3):373–85. https://doi.org/10.1007/s11262-006-0027-2.

    Article  CAS  PubMed  Google Scholar 

  25. Nigam D, La-Tourrette K, Souza PFN, Garcia-Ruiz H. Genome wide variation in potyviruses. Front Plant Sci. 2019;10:1439. https://doi.org/10.3389/fpls.2019.01439.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016. https://doi.org/10.1099/mgen.0.000056.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramesh SV, Mishra AK, Praveen S. Hairpin RNA mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides. 2007;17:251–7. https://doi.org/10.1089/oli.2006.0063.

    Article  CAS  PubMed  Google Scholar 

  28. Rojas MA, Gilbertson RL, Russell DR, Maxwell DP. Use of degenerate primer in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis. 1993;77:340–7.

    Article  CAS  Google Scholar 

  29. Saikia AK, Muniyappa V. Epidemiology and control of tomato leaf curl virus in Southern India. Trop Agric. 1989;66:350–4.

    Google Scholar 

  30. Sastry KS, Mandal B, Hammond J, Scott SW, Briddon RW. Encyclopedia of plant viruses and viroids. Springer India, Print + eBook, 2019, p. 1485. ISBN, 978–81–322–3913–0, https://www.springer.com/us/book/9788132239116.

  31. Sivalingam PN, Varma A. Role of betasatellite in the pathogenesis of a bipartite begomovirus affecting tomato in India. Adv Virol. 2010;12:17–22. https://doi.org/10.1007/s00705-012-1261-7.

    Article  CAS  Google Scholar 

  32. Stanley J. The molecular biology of geminiviruses. Adv Virus Res. 1985;30:139–77. https://doi.org/10.1016/S0065-3527(08)60450-9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun S, Hu Y, Jiang G, Tian Y, Ding M, Yu C, Zhou X, Qian Y. Molecular characterization and genomic function of grapevine geminivirus A. Front Microbiol. 2020;11: 555194. https://doi.org/10.3389/fmicb.2020.555194.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tiwari N, Singh VB, Sharma PK, Malathi VG. Tomato leaf curl Joydebpur virus: a monopartite begomovirus causing severe leafcurl in tomato in West Bengal. Arch Virol. 2013;158:1–10. https://doi.org/10.1007/s00705-012-1440-6.

    Article  CAS  PubMed  Google Scholar 

  35. Venkatasalam EP, Singh S, Verma Y, Bhatt MN, Garg ID, Khurana SM, Malathi VG. Detection of geminivirus causing potato apical leaf curl by ELISA and NASH. Indian J Virol. 2005;16:53.

    Google Scholar 

  36. Wyatt SD, Brown JK. Detection of subgroup III geminivirus isolates in Leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology. 1996;86(12):1288–93. https://doi.org/10.1094/Phyto-86-1288.

    Article  Google Scholar 

  37. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134.

    Article  CAS  Google Scholar 

  38. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A. ICTV Report consortium ICTV virus taxonomy profile Geminiviridae. J Gen Virol. 2017;98(2):131–3. https://doi.org/10.1099/jgv.0.000738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The senior author is supported by the PhD fellowship programme of the Post Graduate School, Indian Agricultural Research Institute, New Delhi. The financial support from the research grant under the Consortia Research Platform on Vaccines & Diagnostics, Indian Council of Agricultural Research, New Delhi is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anirban Roy or Bikash Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 154 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Oraon, P.K., Yadav, P. et al. Random distribution of nucleotide polymorphism throughout the genome of tomato-infecting begomovirus species occurring in India: implication in PCR based diagnosis. VirusDis. 33, 270–283 (2022). https://doi.org/10.1007/s13337-022-00785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-022-00785-9

Keywords

Navigation