1 Introduction

Let \(\varOmega \subseteq {\mathbb {R}}^N\) be a bounded domain with a \(C^2\)-boundary \(\partial \varOmega \). In this paper we study the following nonlinear parametric Robin problem

figure a

In this problem \(\varDelta _p\) denotes the p-Laplace differential operator defined by

$$\begin{aligned} \varDelta _p u= \text{ div } (|\nabla u|^{p-2}\nabla u) \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ) \quad (1<p<+\infty ). \end{aligned}$$

Also \(\xi (\cdot ) \in L^\infty (\varOmega )\) is an indefinite (that is, sign changing) potential function, \(\lambda \in {\mathbb {R}}\) is a parameter and f(zx) is a Carathéodory perturbation function (that is, for all \(x \in {\mathbb {R}}\), \(z \rightarrow f(z,x)\) is measurable and for a.a. \(z \in \varOmega \), \(x \rightarrow f(z,x)\) is continuous). In the boundary condition \(\dfrac{\partial u}{\partial n_p}\) denotes the generalized normal derivative defined by

$$\begin{aligned} \dfrac{\partial u}{\partial n_p}=|\nabla u|^{p-2}(\nabla u, n)_{{\mathbb {R}}^N}=|\nabla u|^{p-2} \dfrac{\partial u}{\partial n} \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ), \end{aligned}$$

with \(n(\cdot )\) being the outward unit normal on \(\partial \varOmega \). This kind of generalized normal derivative is dictated by the nonlinear Green’s identity (see, for example, Gasiński–Papageorgiou [8] (p. 211)). The boundary weight term \(\beta \in C^{0,\alpha }(\partial \varOmega )\) (\(0<\alpha <1\)) and \(\beta (z) \ge 0\) for all \(z \in \partial \varOmega \).

Problem \((P_{\lambda })\) can be viewed as a perturbation of the usual eigenvalue problem for the Robin p-Laplacian plus an indefinite potential. We look for positive solutions and we consider two distinct cases depending on the growth of the perturbation \(f(z,\cdot )\) near \(+\infty \):

  • \(f(z,\cdot )\) is \((p-1)\)-sublinear.

  • \(f(z,\cdot )\) is \((p-1)\)-superlinear.

Let \({\widehat{\lambda }}_1 \in {\mathbb {R}}\) be the principal eigenvalue of the differential operator \(u \rightarrow - \varDelta _p u + \xi (z)|u|^{p-2}u\) with Robin boundary condition. In the first case (\((p-1)\)-sublinear perturbation), we show that for all \(\lambda \ge {\widehat{\lambda }}_1\), problem \((P_{\lambda })\) has no positive solution, while for \(\lambda < {\widehat{\lambda }}_1\), problem \((P_{\lambda })\) has at least one positive solution. Moreover, this positive solution is unique, if we impose a monotonicity condition on the quotient \(x \rightarrow \dfrac{f(z,x)}{x^{p-1}}\) for \(x>0\). In the second case (\((p-1)\)-superlinear perturbation), the situation changes and uniqueness of the positive solution fails. In fact the problem exhibits a kind of bifurcation phenomenon. Namely, for \(\lambda \ge {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has no positive solution, while for \(\lambda < {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has at least two positive solutions. Finally for both situations, we establish the existence of minimal positive solutions. Our work here extends to the p-Laplacian that of Papageorgiou–Rǎdulescu–Repovš [20]. Eigenvalue problems for the p-Laplacian plus an indefinite potential were studied by Papageorgiou–Rǎdulescu [18] (semilinear problems (that is, \(p=2\)) with Robin boundary condition) and by Mugnai–Papageorgiou [16] (nonlinear problems with Neumann boundary condition (that is, \(\beta \equiv 0\))). Both works deal with nonparametric problems and prove existence and multiplicity results under resonance conditions. We also mention the works of Hu–Papageorgiou [10,11,12]. In [11] the authors treat superdiffusive logistic equation with Robin boundary condition, while in [10, 12], they deal with equations driven by a nonhomogeneous differential operator.

2 Auxiliary results

In this section we present some auxiliary results and notions which we will need in the sequel.

First we deal with the following eigenvalue problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varDelta _p u(z)+ \xi (z)| u(z)|^{p-2}u(z)={\widehat{\lambda }} | u(z)|^{p-2}u(z) &{}\quad \text{ in } \varOmega ,\\ \dfrac{\partial u}{\partial n_p} +\beta (z)| u|^{p-2}u=0 &{}\quad \text{ on } \partial \varOmega .\end{array}\right. } \end{aligned}$$
(1)

Our hypotheses on the functions \(\xi (\cdot )\) and \(\beta (\cdot )\) are the following:

\(H(\xi )\)::

\(\xi \in L^\infty (\varOmega )\).

\(H(\beta )_1\)::

\(\beta \in C^{0,\alpha }(\partial \varOmega )\) with \(\alpha \in (0,1)\) and \(\beta (z) \ge 0\) for all \(z \in \partial \varOmega \).

In addition to the Sobolev space \(W^{1,p}(\varOmega )\), we will also use the Banach space \(C^1({\overline{\varOmega }})\) which is an ordered Banach space with positive cone \(C_+=\{u \in C^1({\overline{\varOmega }}) \, : \, u(z) \ge 0 \text{ for } \text{ all } z \in {\overline{\varOmega }}\}\). This cone has a nonempty interior given by

$$\begin{aligned} D_+=\left\{ u \in C_+ \, : \, u(z) > 0 \text{ for } \text{ all } z \in {\overline{\varOmega }}\right\} . \end{aligned}$$

Also on \(\partial \varOmega \) we consider the \((N-1)\)-dimensional Hausdorff (surface) measure \(\sigma (\cdot )\). With this measure on \(\partial \varOmega \), we can define the Lebesgue spaces \(L^\tau (\partial \varOmega )\) \(1 \le \tau \le +\infty \). We know that there exists a unique continuous linear map \(\gamma _0 : W^{1,p}(\varOmega ) \rightarrow L^p(\partial \varOmega )\) known as the “trace map” s.t. \(\gamma _0(u)=u |_{\partial \varOmega }\) for all \(u \in W^{1,p}(\varOmega ) \cap C({\overline{\varOmega }})\). So, we understand the trace map as representing the “boundary values” of a Sobolev function \(u \in W^{1,p}(\varOmega )\). We know that \(\gamma _0\) is compact into \(L^\tau (\partial \varOmega )\) for all \(\tau \in \left[ 1, \dfrac{(N-1)p}{N-p}\right) \) when \(p<N\) and into \(L^\tau (\partial \varOmega )\) for all \(\tau \in [1,+\infty )\) when \(p \ge N\). Moreover, we have

$$\begin{aligned} {\mathrm{im }}\, \gamma _0=W^{\frac{1}{p'},p}(\partial \varOmega ) \quad \left( \frac{1}{p}+\frac{1}{p'}=1\right) \quad \text{ and } \quad \mathrm{ker } \, \gamma _0= W^{1,p}_0(\varOmega ). \end{aligned}$$

In the sequel for the sake of notational simplicity we drop the use of the trace map \(\gamma _0\). It is understood that all restrictions of Sobolev functions on \(\partial \varOmega \) are taken in the sense of traces.

In what follows by \(\vartheta : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) we denote the \(C^1\)-functional defined by

$$\begin{aligned} \vartheta (u)= \Vert \nabla u\Vert _p^p + \int _\varOmega \xi (z)|u|^pdz + \int _{\partial \varOmega } \beta (z)|u|^p d \sigma \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From Fragnelli–Mugnai–Papageorgiou [7], we have the following proposition concerning problem (1) (see also Mugnai–Papageorgiou [16] and Papageorgiou–Rǎdulescu [18] where special cases of (1) are investigated).

Proposition 1

If hypotheses \(H(\xi )\), \(H(\beta )_1\) hold, then problem (1) admits a smallest eigenvalue \({\widehat{\lambda }}_1 \in {\mathbb {R}}\) s.t.

  • $$\begin{aligned} {\widehat{\lambda }}_1=\inf \left[ \frac{\vartheta (u)}{\Vert u\Vert _p^p} \, : \, u \in W^{1,p}(\varOmega ), \, u \ne 0 \right] . \end{aligned}$$
    (2)
  • \({{\widehat{\lambda }}}_1\) is isolated and simple.

  • The infimum in (2) is realized on the one-dimensional eigenspace of \({\widehat{\lambda }}_1\); the elements of this eigenspace do not change sign and if \({\widehat{u}}_1\) denotes the positive, \(L^p\)-normalized (that is, \(\Vert {\widehat{u}}_1\Vert _p=1\)) eigenfunction, then \({\widehat{u}}_1 \in D_+\).

    • If \({\widehat{\lambda }}>{\widehat{\lambda }}_1\) is another eigenvalue and \({\widehat{u}} \in W^{1,p}(\varOmega )\) a corresponding eigenfunction, then \({\widehat{u}} \in C^1({\overline{\varOmega }})\) is nodal (that is, sign changing).

As a consequence of these properties, we have the following useful lemma.

Lemma 1

If hypotheses \(H(\xi )\), \(H(\beta )_1\) hold, \(\eta \in L^\infty (\varOmega )\), \(\eta (z) \le {\widehat{\lambda }}_1\) for a.a. \(z \in \varOmega \) and the inequality is strict on a set of positive measure, then there exists \({\widehat{c}}>0\) s.t.

$$\begin{aligned} {\widehat{c}} \Vert u\Vert ^p \le \vartheta (u)-\int _\varOmega \eta (z)|u|^pdz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

Proof

Let \(\zeta : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) be the \(C^1\)-functional defined by

$$\begin{aligned} \zeta (u)=\vartheta (u)-\int _\varOmega \eta (z)|u|^pdz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From (2) we have \(\zeta \ge 0\). Suppose that the claim of the lemma is not true. Then we can find \(\{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} \zeta (u_n) \downarrow 0 \quad \text{ as } n \rightarrow +\infty . \end{aligned}$$
(3)

The p-homogeneity of \(\zeta (\cdot )\) implies that we may assume that \(\Vert u_n\Vert _p=1\) for all \(n \in {\mathbb {N}}\). Then clearly \(\{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega )\) is bounded (see hypotheses \(H(\xi )\), \(H(\beta )_1\)) and so we may assume that

$$\begin{aligned} u_n \xrightarrow {w} u \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad u_n \rightarrow u \text{ in } L^p(\varOmega ) \text{ and } \text{ in } L^p(\partial \varOmega ), \, \Vert u\Vert _p=1. \end{aligned}$$
(4)

From (3) and (4), we obtain

$$\begin{aligned}&\vartheta (u) \le \int _\varOmega \eta (z)|u|^p dz \le {\widehat{\lambda }}_1 \Vert u\Vert _p^p={\widehat{\lambda }}_1,\nonumber \\&\quad \Rightarrow \vartheta (u)={\widehat{\lambda }}_1 \quad \text{(see } (2)),\nonumber \\&\quad \Rightarrow u= \mu {\widehat{u}}_1 \quad \text{ with } \mu \ne 0~(\text{ see } \text{ Proposition }~1). \end{aligned}$$
(5)

To fix things we assume that \(\mu >0\) (the reasoning is the same if \(\mu <0\)). Then from (5) and since \(u=\mu {\widehat{u}}_1 \in D_+\), we have

$$\begin{aligned} \vartheta (u) < {\widehat{\lambda }}_1 \end{aligned}$$

wich contradicts (2). \(\square \)

Let \(A:W^{1,p}(\varOmega ) \rightarrow W^{1,p}(\varOmega )^*\) be the nonlinear map defined by

$$\begin{aligned} \langle A(u),h \rangle =\int _\varOmega |\nabla u |^{p-2}(\nabla u, \nabla h)_{{\mathbb {R}}^N}dz \quad \text{ for } \text{ all } u,h \in W^{1,p}(\varOmega ). \end{aligned}$$

From Motreanu–Motreanu–Papageorgiou [14] (p. 40), we have the following result concerning this map.

Proposition 2

The map \(A(\cdot )\) is bounded (that is, maps bounded sets to bounded sets), monotone, continuous (hence maximal monotone too) and of type \((S)_+\), that is, if \( u_n \xrightarrow {w} u\) in \(W^{1,p}(\varOmega )\) and \(\limsup _{n \rightarrow + \infty } \langle A(u_n),u_n-u\rangle \le 0\), then \(u_n \rightarrow u\) in \(W^{1,p}(\varOmega )\).

Recall that if X is a Banach space and \(\varphi \in C^1(X, {\mathbb {R}})\), then we say that \(\varphi \) satisfies the Cerami condition (the C-condition for short), if the following is true:

“Every sequence \(\{u_n\}_{n \ge 1} \subseteq X\) s.t. \(\{\varphi (u_n)\}_{n \ge 1} \subseteq {\mathbb {R}} \) is bounded and \((1 + \Vert u_n\Vert ) \varphi '(u_n) \rightarrow 0 \) in \(X^*\) as \(n \rightarrow +\infty \), admits a strongly convergent subsequence”.

Let \(f_0: \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) be a Carathéodory function s.t.

$$\begin{aligned} |f_0(z,x)| \le a(z) (1+|x|^{p^*-1}) \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \in {\mathbb {R}}, \end{aligned}$$

with \(a \in L^\infty (\varOmega )_+\) and \(p^*= {\left\{ \begin{array}{ll} \frac{Np}{N-p} &{} \text{ if } p<N\\ +\infty &{}\text{ if } N \le p\end{array}\right. }\) (the critical Sobolev exponent). Let \(F_0(z,x)= \int _0^x f_0(z,s)ds\) and consider the \(C^1\)-functional \(\varphi _0:W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} \varphi _0(u)= \frac{1}{p}\vartheta (u) - \int _\varOmega F_0(z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From Papageorgiou–Rǎdulescu [17], we have the following result relating local minimizers of \(\varphi _0\) and which is an outgrowth of the nonlinear regularity theory. The first such result was proved by Brezis-Nirenberg [4] for \(p=2\) and the space \(H_0^1(\varOmega )\).

Proposition 3

If \(u_0 \in W^{1,p}(\varOmega )\) is a local \(C^1({\overline{\varOmega }})\)-minimizer of \(\varphi _0\), that is, there exists \(\delta _1>0\) s.t.

$$\begin{aligned} \varphi _0(u_0) \le \varphi _0(u_0+h) \quad \text{ for } \text{ all } h \in C^1({\overline{\varOmega }}), \Vert h\Vert _{C^1({\overline{\varOmega }})}\le \delta _1, \end{aligned}$$

then \(u_0 \in C^{1,\tau }({\overline{\varOmega }})\) with \(\tau \in (0,1)\) and it is also a local \(W^{1,p}(\varOmega )\)-minimizer of \(\varphi _0\), that is, there exists \(\delta _2>0\) s.t.

$$\begin{aligned} \varphi _0(u_0) \le \varphi _0(u_0+h) \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ), \Vert h\Vert \le \delta _2. \end{aligned}$$

To make good use of this result, we need a strong comparison principle. In this direction we have the following proposition which is a special case of a more general result due to Fragnelli–Mugnai–Papageorgiou [6]. Given \(h_1,h_2 \in L^\infty (\varOmega )\), we say that \(h_1 \prec h_2\) if and only if for every \(K \subseteq \varOmega \) compact, there exists \(\varepsilon =\varepsilon (K)>0\) s.t.

$$\begin{aligned} h_1(z) + \varepsilon \le h_2(z) \quad \text{ for } \text{ a.a. } z \in K. \end{aligned}$$

Note that if \(h_1,h_2 \in C(\varOmega )\) and \(h_1(z)<h_2(z)\) for all \(z \in \varOmega \), then \(h_1 \prec h_2\).

Proposition 4

If \(\xi , h_1,h_2 \in L^\infty (\varOmega )\), \(h_1 \prec h_2\), \(u \in C^1({\overline{\varOmega }}) {\setminus } \{0\}\), \( v \in D_+\) and they satisfy

$$\begin{aligned}&- \varDelta _p u(z)+\xi (z)|u(z)|^{p-2}u(z)=h_1(z) \quad \text{ for } \text{ a.a. } z \in \varOmega , \\&- \varDelta _p v(z)+\xi (z) v(z)^{p-1}=h_2(z) \quad \text{ for } \text{ a.a. } z \in \varOmega , \,\dfrac{\partial v}{\partial n}<0 \text{ on } \partial \varOmega , \end{aligned}$$

then \((v-u)(z)>0\), for all \(z \in \varOmega \) and \(\dfrac{\partial (v-u)}{\partial n}\Big |_{D_0}<0\) where \(D_0=\{z \in \partial \varOmega : v(z)=u(z)\}\).

Remark 1

If in \(C^1({\overline{\varOmega }})\) we introduce the order cone

$$\begin{aligned} {\widehat{C}}_+=\left\{ y \in C^1({\overline{\varOmega }}): y(z) \ge 0 \text{ for } \text{ all } z \in {\overline{\varOmega }}, \, \dfrac{\partial y}{\partial n} \le 0 \text{ on } D_0\right\} \end{aligned}$$

then the above proposition says that \(v-u \in {\mathrm{int }} \, {\widehat{C}}_+\). If \(D_0 = \emptyset \), then \({\widehat{C}}_+=C_+\).

For problem \((P_{\lambda })\), we introduce the following two sets:

$$\begin{aligned} {\mathcal {L}}&=\{\lambda \in {\mathbb {R}}: \text{ problem } (P_{\lambda }) \text{ admits } \text{ a } \text{ positive } \text{ solution }\},\\ S(\lambda )&=\{ \text{ set } \text{ of } \text{ positive } \text{ solutions } \text{ for } \text{ problem } (P_{\lambda })\}. \end{aligned}$$

For the set \(S(\lambda )\) we have the following general result.

Proposition 5

If hypotheses \(H(\xi )\), \(H(\beta )_1\) hold and \(f: \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x) \ge 0\) for all \(x > 0\), \(f(z,x)=0\) for all \(x < 0\) and \(f(z,x) \le a(z)(1+x^{p^*-1})\) for a.a. \(z \in \varOmega \), all \(x \ge 0\), with \(a \in L^\infty (\varOmega )_+\), then \(S(\lambda ) \subseteq D_+\) (possibly empty).

Proof

Suppose that \(u \in S(\lambda )\). Then

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varDelta _p u(z)+ \xi (z) u(z)^{p-1}=\lambda u(z)^{p-1} +f(z,u(z)) &{}\quad \text{ for } \text{ a.a. } z \in \varOmega ,\\ \dfrac{\partial u}{\partial n_p} +\beta (z) u^{p-1}=0 &{}\quad \text{ on } \partial \varOmega \end{array}\right. } \end{aligned}$$
(6)

(see Papageorgiou–Rǎdulescu [17]). From (6) and Papageorgiou–Rǎdulescu [19] we have \(u \in L^\infty (\varOmega )\). Then Theorem 2 of Lieberman [13] implies that \(u \in C_+ {\setminus } \{0\}\). From (6) and since \(f \ge 0\), we have

$$\begin{aligned}&\varDelta _pu(z) \le (\Vert \xi \Vert _\infty +|\lambda |)u(z)^{p-1} \quad \text{ for } \text{ a.a. } z \in \varOmega , \\&\quad \Rightarrow u \in D_+ \quad \text{(by } \text{ the } \text{ nonlinear } \text{ strong } \text{ maximum } \text{ principle } \text{(see } [8]~\text{(p. } \text{738) }). \end{aligned}$$

\(\square \)

Proposition 6

If hypotheses \(H(\xi )\), \(H(\beta )_1\) hold, \(f: \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \) \(f(z,0)=0\), \(f(z,x)>0\) for all \(x>0\), \(f(z,x) \le a(z)(1+x^{p^*-1})\) for a.a. \(z \in \varOmega \), all \(x\ge 0\), with \(a \in L^\infty (\varOmega )_+\) and \(\lambda \ge {\widehat{\lambda }}_1\), then \(S(\lambda )=\emptyset \).

Proof

Arguing by contradiction, suppose that \(S(\lambda ) \ne \emptyset \) and let \(u \in S(\lambda )\). From Proposition 5 we know that \(u \in D_+\). Also, let \({\widehat{u}}_1 \in D_+\) be the principal eigenfunction from Proposition 5. Consider the function

$$\begin{aligned} R({\widehat{u}}_1,u)(z)=|\nabla {\widehat{u}}_1(z)|^p-|\nabla u(z)|^{p-2}\left( \nabla u(z), \nabla \left( \frac{{\widehat{u}}_1^p}{u^{p-1}}\right) (z)\right) _{{\mathbb {R}}^N}. \end{aligned}$$

From the nonlinear Picone’s identity of Allegretto-Huang [2] (see also Motreanu–Motreanu–Papageorgiou [14] (p. 255)), we have

$$\begin{aligned} 0 \le R({\widehat{u}}_1,u)(z) \quad \text{ for } \text{ a.a. } z \in \varOmega . \end{aligned}$$

Then we have

$$\begin{aligned} 0&\le \int _\varOmega R({\widehat{u}}_1,u) dz \\&=\Vert \nabla {\widehat{u}}_1\Vert _p^p - \int _\varOmega |\nabla u|^{p-2}\left( \nabla u, \nabla \left( \frac{{\widehat{u}}_1^p}{u^{p-1}}\right) \right) _{{\mathbb {R}}^N}dz\\&=\Vert \nabla {\widehat{u}}_1\Vert _p^p - \int _\varOmega (-\varDelta _p u)\frac{{\widehat{u}}_1^p}{u^{p-1}} dz + \int _{\partial \varOmega } \beta (z){\widehat{u}}_1^p d \sigma \\&\quad \text {(by the nonlinear Green's identity, see Gasi}\acute{{\text {n}}}\text {ski--Papageorgiou }[8]~\text {(p. 211))}\\&= \Vert \nabla {\widehat{u}}_1\Vert _p^p -\int _\varOmega (\lambda - \xi (z)){\widehat{u}}_1^p dz -\int _\varOmega f(z,u)\frac{{\widehat{u}}_1^p}{u^{p-1}} dz + \int _{\partial \varOmega } \beta (z){\widehat{u}}_1^p d \sigma \\&< \vartheta ({\widehat{u}}_1) - \lambda \quad \text{(since } f(z,u(z))\frac{{\widehat{u}}_1^p}{u^{p-1}}(z)>0 \text{ for } \text{ a.a. } z \in \varOmega \text{ and } \Vert {\widehat{u}}_1\Vert _p=1)\\&= {\widehat{\lambda }}_1 - \lambda \le 0, \end{aligned}$$

a contradiction. Therefore \(S(\lambda )=\emptyset \) for all \(\lambda \ge {\widehat{\lambda }}_1\). \(\square \)

3 \((p-1)\)-sublinear perturbation

In this section, we deal with the case of a \((p-1)\)-sublinear perturbation \(f(z,\cdot )\).

\(H_1\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x)>0\) for all \(x >0\) and

  1. (i)

    for every \(\rho >0\), there exists \(a_\rho \in L^\infty (\varOmega )_+\) s.t. \(f(z,x) \le a_\rho (z)\) for a.a. \(z \in \varOmega \), all \(x \in [0,\rho ]\);

  2. (ii)

    \(\lim \nolimits _{x \rightarrow + \infty }\dfrac{f(z,x)}{x^{p-1}}=0\) uniformly for a.a. \(z \in \varOmega \);

  3. (iii)

    there exist \(\delta >0\), \(q \in (1,p)\) and \(c_1>0\) s.t.

    $$\begin{aligned} c_1x^{q-1} \le f(z,x) \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \in [0,\delta ]. \end{aligned}$$

Remark 2

Since we are looking for positive solutions and the above hypotheses concern the positive semiaxis \({\mathbb {R}}_+=[0,+\infty )\), without any loss of generality we may assume that \(f(z,x)=0\) for a.a. \(z \in \varOmega \), all \(x < 0\). Hypothesis \(H_1\)(ii) says that for a.a. \(z \in \varOmega \) the perturbation \(f (z,\cdot )\) is \((p-1)\)-sublinear near \(+\infty \). Finally hypothesis \(H_1\)(iii) implies the presence of a concave term near \(0^+\).

Example 1

The following functions satisfy hypotheses \(H_1\). For the sake of simplicity we drop the z-dependence.

$$\begin{aligned} f_1(x)&=x^{q-1} \quad \text{ for } \text{ all } x \ge 0 \text{ with } 1<q<p,\\ f_2(x)&={\left\{ \begin{array}{ll}x^{q-1}-x^{\tau -1} &{} \text{ if } x \in [0,1],\\ \ln x^{p-1} &{} \text{ if } 1<x, \end{array}\right. } \text{ with } 1<q<p, 1<q< \tau . \end{aligned}$$

Proposition 7

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\) hold and \(\lambda < {\widehat{\lambda }}_1\), then \(S(\lambda ) \ne \emptyset \) and so \({\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\).

Proof

Let \(\eta > \Vert \xi \Vert _\infty \) and consider the following Carathéodory function

$$\begin{aligned} g_\lambda (z,x)={\left\{ \begin{array}{ll}0 &{} \text{ if } x \le 0,\\ (\lambda + \eta )x^{p-1}+f(z,x) &{} \text{ if } 0<x.\end{array}\right. } \end{aligned}$$
(7)

We set \(G_\lambda (z,x)=\int _0^x g_\lambda (z,s)ds\) and consider the \(C^1\)-functional \(\varphi _\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} \varphi _\lambda (u)=\frac{1}{p}\vartheta (u)+ \frac{\eta }{p}\Vert u\Vert _p^p- \int _\varOmega G_\lambda (z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

Hypotheses \(H_1\)(i), (ii) imply that given \(\varepsilon >0\), we can find \(c_2=c_2(\varepsilon )>0\) s.t.

$$\begin{aligned} F(z,x) \le \frac{\varepsilon }{p}x^p +c_2 \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge 0. \end{aligned}$$
(8)

Then for all \(u \in W^{1,p}(\varOmega )\) we have

$$\begin{aligned} \varphi _\lambda (u)&\ge \frac{1}{p} \vartheta (u) + \frac{\eta }{p}\Vert u^-\Vert _p^p -\frac{\lambda + \varepsilon }{p}\Vert u^+\Vert _p^p- c_2 |\varOmega |_N \quad \text{(see } (7), (8)) \nonumber \\&\ge \frac{1}{p} \vartheta (u) -\frac{\lambda + \varepsilon }{p}\Vert u\Vert _p^p- c_2 |\varOmega |_N . \end{aligned}$$
(9)

Here by \(|\cdot |_N\) we denote the Lebesgue measure on \({\mathbb {R}}^N\). Choosing \(\varepsilon \in (0, {\widehat{\lambda }}_1 - \lambda )\) (recall that \(\lambda < {\widehat{\lambda }}_1\)), from (9) and Lemma 1, we have

$$\begin{aligned} \varphi _\lambda (u)&\ge c_3 \Vert u\Vert ^p-c_2|\varOmega |_N \quad \text{ for } \text{ some } c_3>0, \text{ all } u \in W^{1,p}(\varOmega ),\\&\Rightarrow \varphi _\lambda (\cdot ) \text{ is } \text{ coercive }. \end{aligned}$$

Using the Sobolev embedding theorem and the compactness of the trace operator, we see that

$$\begin{aligned} \varphi _\lambda (\cdot ){\text { is sequentially weakly lower semicontinuous.}} \end{aligned}$$

Then invoking the Weierstrass-Tonelli theorem, we can find \(u_\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} \varphi _\lambda (u_\lambda )=\inf \left[ \varphi _\lambda (u) : u \in W^{1,p}(\varOmega ) \right] . \end{aligned}$$
(10)

Let \(t \in (0,1)\) be small s.t.

$$\begin{aligned} t {\widehat{u}}_1(z) \in (0,\delta ] \quad \text{ for } \text{ all } z \in {\overline{\varOmega }}\quad \text{(recall } {\widehat{u}}_1 \in D_+). \end{aligned}$$

Here \(\delta >0\) is as in hypothesis \(H_1\)(iii). Then we have

$$\begin{aligned} \varphi _\lambda (t {\widehat{u}}_1)&\le \frac{t^p}{p} \vartheta ({\widehat{u}}_1)- \frac{t^p}{p} \lambda - \frac{t^q}{q} c_1 \Vert {\widehat{u}}_1\Vert _q^q \quad \text{(see } (7) \text{ and } \text{ hypothesis } H_1\text{(iii)) }\\&= \frac{t^p}{p}[ {\widehat{\lambda }}_1 - \lambda ] - \frac{t^q}{q} c_1 \Vert {\widehat{u}}_1\Vert _q^q \quad \text{(see } \text{ Proposition }~1 \text{ and } \text{ recall } \text{ that } \Vert {\widehat{u}}_1\Vert _p=1)\\&= \frac{t^p}{p}c_4 - \frac{t^q}{q} c_5 \quad \text{ with } c_4={\widehat{\lambda }}_1 - \lambda>0, c_5=c_1 \Vert {\widehat{u}}_1\Vert _q^q>0. \end{aligned}$$

Since \(t \in (0,1)\) and \(q<p\), by choosing \(t \in (0,1)\) even smaller if necessary, we have

$$\begin{aligned}&\varphi _\lambda (t {\widehat{u}}_1)<0,\\&\quad \Rightarrow \varphi _\lambda (u_\lambda )<0=\varphi _\lambda (0) \quad \text{(see } (10)),\\&\quad \Rightarrow u_\lambda \ne 0. \end{aligned}$$

From (10), we have

$$\begin{aligned}&\varphi '_\lambda (u_\lambda )=0, \nonumber \\&\quad \Rightarrow \langle A(u_\lambda ),h \rangle + \int _\varOmega (\xi (z)+\eta ) |u_\lambda |^{p-2}u_\lambda h dz + \int _{\partial \varOmega } \beta (z)|u_\lambda |^{p-2}u_\lambda h d \sigma \nonumber \\&\quad = \int _\varOmega [(\lambda +\eta )(u_\lambda ^+)^{p-1}+f(z,u_\lambda ^+)]h dz \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ). \end{aligned}$$
(11)

In (11) we choose \(h=-u_\lambda ^- \in W^{1,p}(\varOmega )\). Then

$$\begin{aligned}&\vartheta (u_\lambda ^-) + \eta \Vert u_\lambda ^-\Vert _p^p=0,\\&\quad \Rightarrow c_6 \Vert u_\lambda ^-\Vert ^p \le 0 \text{ for } \text{ some } c_6>0\\&\qquad \text{(recall } \text{ that } \eta >\Vert \xi \Vert _\infty \text{ and } \text{ see } \text{ hypothesis } H(\beta )_1)\\&\quad \Rightarrow u_\lambda \ge 0, \, u_\lambda \ne 0. \end{aligned}$$

Then equation (11) becomes

$$\begin{aligned}&\langle A(u_\lambda ),h \rangle + \int _\varOmega \xi (z)u_\lambda ^{p-1}h dz + \int _{\partial \varOmega }\beta (z)u_\lambda ^{p-1}h d \sigma \\&\quad =\int _\varOmega [\lambda u_\lambda ^{p-1}+f(z,u_\lambda )]h dz \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ),\\&\quad \Rightarrow -\varDelta _p u_\lambda (z)+\xi (z)u_\lambda (z)^{p-1}=\lambda u_\lambda (z)^{p-1}+f(z,u_\lambda (z)) \quad \text{ for } \text{ a.a. } z \in \varOmega ,\\&\qquad \dfrac{\partial u_\lambda }{\partial n_p} + \beta (z)u_\lambda ^{p-1}=0 \quad \text{ on } \partial \varOmega ,\\&\quad \Rightarrow u_\lambda \in S(\lambda ) \subseteq D_+ \quad \text{(see } \text{ Proposition }~5 \text{ and } \text{ so } {\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1). \end{aligned}$$

\(\square \)

In fact we can show that problem \((P_{\lambda })\) for \(\lambda < {\widehat{\lambda }}_1\) has a smallest positive solution.

Fix \(\lambda < {\widehat{\lambda }}_1\) and \(r \in (p,p^*)\). Hypotheses \(H_1\)(i), (ii), (iii) imply that we can find \(c_7(\lambda )>0\) with \(\lambda \rightarrow c_7(\lambda )\) bounded on bounded subsets of \({\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\) s.t.

$$\begin{aligned} \lambda x^{p-1}+f(z,x) \ge c_1 x^{q-1}-c_7(\lambda )x^{r-1} \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge 0. \end{aligned}$$
(12)

This unilateral growth estimate for the reaction term of problem \((P_{\lambda })\) leads to the following auxiliary nonlinear Robin problem:

figure b

For this problem we have the following existence and uniqueness result.

Proposition 8

If hypotheses \(H(\xi )\), \(H(\beta )_1\) hold, then for every \(\lambda \in {\mathbb {R}}\) problem (\(Au_\lambda \)) admits a unique positive solution \(u_*^\lambda \in D_+.\)

Proof

First we show the existence of a positive solution for problem (\(Au_\lambda \)). To this end, we consider the \(C^1\)-functional \(\psi _\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} \psi _\lambda (u)&= \frac{1}{p}\vartheta (u) + \frac{\eta }{p}\Vert u^-\Vert _p^p -\frac{c_1}{q}\Vert u^+\Vert _q^q+\frac{c_7(\lambda )}{r}\Vert u^+\Vert ^r_r \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega )\nonumber \\&\quad \ge \frac{1}{p}\left[ \vartheta (u^-)+\eta \Vert u^-\Vert _p^p\right] + \frac{1}{p}\vartheta (u^+)+\frac{c_7(\lambda )}{r}\Vert u^+\Vert ^r_r -\frac{c_1}{q}\Vert u^+\Vert _q^q . \end{aligned}$$
(13)

We have

$$\begin{aligned}&\frac{1}{p}\vartheta (u^+)+\frac{c_7(\lambda )}{r}\Vert u^+\Vert ^r_r -\frac{c_1}{q}\Vert u^+\Vert _q^q \nonumber \\&\quad \ge \frac{1}{p}\Vert \nabla u^+\Vert _p^p+c_8(\lambda )\Vert u^+\Vert ^r_p -\frac{1}{p}\Vert \xi \Vert _\infty \Vert u^+\Vert _p^p-c_9\Vert u^+\Vert _p^q \quad (\text{ for } \text{ some } c_8(\lambda ),c_9 >0)\nonumber \\&\quad =\frac{1}{p}\Vert \nabla u^+\Vert _p^p+\left[ c_8(\lambda )\Vert u^+\Vert ^{r-p}_p -\frac{1}{p}\Vert \xi \Vert _\infty -\dfrac{c_9}{\Vert u^+\Vert ^{p-q}_p}\right] \Vert u^+\Vert _p^p. \end{aligned}$$
(14)

Using (14) in (13) and recalling that \(q<p<r\), we infer that \(\psi _\lambda (\cdot )\) is coercive. Also, it is sequentially weakly lower semicontinuous (use the Sobolev embedding theorem and the compactness of the trace map). So, by the Weierstrass-Tonelli theorem, we can find \(u_*^\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} \psi _\lambda (u^\lambda _*)=\inf \left[ \psi _\lambda (u) : u \in W^{1,p}(\varOmega ) \right] . \end{aligned}$$
(15)

Since \(q<p<r\), as before (see the proof of Proposition 7), we can show that

$$\begin{aligned}&\psi _\lambda (u^\lambda _*)<0,\\&\quad \Rightarrow u^\lambda _* \ne 0. \end{aligned}$$

From (15) we have

$$\begin{aligned}&\psi '_\lambda (u^\lambda _*)=0, \nonumber \\&\quad \Rightarrow \langle A(u^\lambda _*),h \rangle + \int _\varOmega \xi (z) |u^\lambda _*|^{p-2}u^\lambda _* h dz + \int _{\partial \varOmega } \beta (z)|u^\lambda _*|^{p-2}u^\lambda _* h d \sigma \nonumber \\&\qquad - \eta \int _\varOmega (u^{\lambda ^-}_*)^{p-1}hdz\nonumber \\&\quad =c_1 \int _\varOmega (u^{\lambda ^+}_*)^{q-1} h dz - c_7(\lambda ) \int _\varOmega (u^{\lambda ^+}_*)^{r-1} h dz\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ). \end{aligned}$$
(16)

In (16) we choose \(h=-u^{\lambda ^-}_*\in W^{1,p}(\varOmega )\). Then

$$\begin{aligned}&\vartheta (u^{\lambda ^-}_*) + \eta \Vert u^{\lambda ^-}_*\Vert _p^p=0,\\&\quad \Rightarrow c_{10} \Vert u^{\lambda ^-}_*\Vert ^p \le 0 \text{ for } \text{ some } c_{10}>0~\text{(recall } \text{ that } \eta >\Vert \xi \Vert _\infty ),\\&\quad \Rightarrow u^{\lambda }_* \ge 0, \, u^{\lambda }_* \ne 0. \end{aligned}$$

Therefore Eq. (16) becomes

$$\begin{aligned}&\langle A(u^{\lambda }_*),h \rangle + \int _\varOmega \xi (z)(u^{\lambda }_*)^{p-1}h dz + \int _{\partial \varOmega }\beta (z)(u^{\lambda }_*)^{p-1}h d \sigma \nonumber \\&\quad =c_1 \int _\varOmega (u^{\lambda }_*)^{q-1} h dz - c_7(\lambda ) \int _\varOmega (u^{\lambda }_*)^{r-1} h dz \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ),\nonumber \\&\quad \Rightarrow -\varDelta _p u^{\lambda }_*(z)+\xi (z)u^{\lambda }_*(z)^{p-1}=c_1 u^{\lambda }_*(z)^{q-1}- c_7(\lambda )u^{\lambda }_*(z)^{r-1} \quad \text{ for } \text{ a.a. } z \in \varOmega ,\nonumber \\&\qquad \dfrac{\partial u^{\lambda }_*}{\partial n_p} + \beta (z)(u^{\lambda }_*)^{p-1}=0 \quad \text{ on } \partial \varOmega \quad \text {(see Papageorgiou-R}{\check{\text {a}}}\text {dulescu }[17]), \\&\quad \Rightarrow u_*^\lambda \text{ is } \text{ a } \text{ positive } \text{ solution } \text{ of } (Au_{\lambda }). \nonumber \end{aligned}$$
(17)

As before, the nonlinear regularity theory (see [13]) implies \(u_*^\lambda \in C_+ {\setminus } \{0\}\).

Moreover, from (17) we have

$$\begin{aligned} \varDelta _p u_*^\lambda (z)&\le (c_7(\lambda ) \Vert u_*^\lambda \Vert _\infty ^{r-p}+\Vert \xi \Vert _\infty ) u_*^\lambda (z)^{p-1}\\&\le c_{11}u_*^\lambda (z)^{p-1} \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ some } c_{11}>0,\\&\Rightarrow u^\lambda _* \in D_+ ~\text{(by } \text{ the } \text{ nonlinear } \text{ strong } \text{ maximum } \text{ principle, } [8]~\text{(p. } \text{738)) }. \end{aligned}$$

Next we show the uniqueness of this positive solution. To this end suppose that \(v_*^\lambda \in W^{1,p}(\varOmega )\) is another positive solution of (\(Au_\lambda \)). As above we can show that \(v^\lambda _* \in D_+\).

We have

$$\begin{aligned}&\int _\varOmega \left( \frac{c_1}{(u^\lambda _*)^{p-q}}-c_7(\lambda )(u^\lambda _*)^{r-p} \right) \left( (u^\lambda _*)^{p}-(v^\lambda _*)^{p} \right) dz\nonumber \\&\quad =\int _\varOmega \left( c_1(u^\lambda _*)^{q-1}-c_7(\lambda )(u^\lambda _*)^{r-1}\right) \left( u^\lambda _* - \dfrac{(v^\lambda _*)^{p}}{(u^\lambda _*)^{p-1}}\right) dz\nonumber \\&\quad =\int _\varOmega \left( -\varDelta _p u_*^\lambda +\xi (z) (u^\lambda _*)^{p-1}\right) \left( u^\lambda _* - \dfrac{(v^\lambda _*)^{p}}{(u^\lambda _*)^{p-1}}\right) dz \quad \text{(see } (17))\nonumber \\&\quad = \int _\varOmega |\nabla u_*^\lambda |^{p-2} \left( \nabla u_*^\lambda , \nabla \left( u^\lambda _* - \dfrac{(v^\lambda _*)^{p}}{(u^\lambda _*)^{p-1}}\right) \right) _{{\mathbb {R}}^N}dz\nonumber \\&\qquad + \int _\varOmega \xi (z) (u^\lambda _*)^{p-1}\left( u^\lambda _* - \dfrac{(v^\lambda _*)^{p}}{(u^\lambda _*)^{p-1}}\right) dz\nonumber \\&\qquad + \int _\varOmega \beta (z)(u_*^\lambda )^{p-1} \left( u^\lambda _* - \dfrac{(v^\lambda _*)^{p}}{(u^\lambda _*)^{p-1}}\right) d\sigma \nonumber \\&\qquad \text { (using the nonlinear Green's identity, see }[8]~\text{(p. } \text{211) })\nonumber \\&\quad = \Vert \nabla u_*^\lambda \Vert ^p_p -\Vert \nabla v_*^\lambda \Vert ^p_p + \int _\varOmega R(v_*^\lambda , u_*^\lambda )dz + \int _\varOmega \xi (z)\left( (u_*^\lambda )^p - (v_*^\lambda )^p\right) dz \nonumber \\&\qquad + \int _\varOmega \beta (z)\left( (u_*^\lambda )^p - (v_*^\lambda )^p\right) d \sigma . \end{aligned}$$
(18)

Interchanging the roles of \(u_*^\lambda \) and \(v_*^\lambda \) in the above argument, we also have

$$\begin{aligned}&\int _\varOmega \left( \frac{c_1}{(v^\lambda _*)^{p-q}}-c_7(\lambda )(v^\lambda _*)^{r-p} \right) \left( (v^\lambda _*)^{p}-(u^\lambda _*)^{p} \right) dz \nonumber \\&\quad = \Vert \nabla v_*^\lambda \Vert ^p_p -\Vert \nabla u_*^\lambda \Vert ^p_p + \int _\varOmega R(u_*^\lambda , v_*^\lambda )dz + \int _\varOmega \xi (z)\left( (v_*^\lambda )^p - (u_*^\lambda )^p\right) dz \nonumber \\&\qquad + \int _\varOmega \beta (z)\left( (v_*^\lambda )^p - (u_*^\lambda )^p\right) d \sigma . \end{aligned}$$
(19)

Adding (18) and (19) and using the nonlinear Picone’s identity, we have

$$\begin{aligned} 0&\le \int _\varOmega \left( R(v_*^\lambda , u_*^\lambda ) +R(u_*^\lambda , v_*^\lambda )\right) dz \nonumber \\&= \int _\varOmega \left( c_1\left( \frac{1}{(u^\lambda _*)^{p-q}} -\frac{1}{(v^\lambda _*)^{p-q}}\right) -c_7(\lambda )\left( (u^\lambda _*)^{r-p} -(v^\lambda _*)^{r-p}\right) \right) \left( (u^\lambda _*)^{p}-(v^\lambda _*)^{p} \right) dz. \end{aligned}$$
(20)

Since the function \(x \rightarrow \dfrac{c_1}{x^{p-q}}-c_7(\lambda )x^{r-p}\) is strictly decreasing on \((0,+\infty )\), from (20) we infer that

$$\begin{aligned} u_*^\lambda = v_*^\lambda . \end{aligned}$$

This proves the uniqueness of the positive solution \(u_*^\lambda \in D_+\) of problem (\(Au_\lambda \)). \(\square \)

Remark 3

There is an alternative approach to the uniqueness of the positive solution \(u_*^\lambda \in D_+\) of problem (\(Au_\lambda \)) which does not use the nonlinear Picone’s identity. For this we need to assume that \(\beta (z)>0\) for all \(z \in \partial \varOmega \). First note that, if \(\rho =\Vert u_*^\lambda \Vert _\infty \), then we can find \({\widehat{\xi }}_\rho >0\) s.t. for a.a. \(z \in \varOmega \), the function \(x \rightarrow c_1 x^{q-1}-c_7(\lambda )x^{r-1}+ {\widehat{\xi }}_\rho x^{p-1}\) is nondecreasing on \([0,\rho ]\). As before let \(v_*^\lambda \in D_+\) be another positive solution of (\(Au_\lambda \)) and let \(t>0\) be the biggest real s.t.

$$\begin{aligned} tv_*^\lambda \le u_*^\lambda . \end{aligned}$$
(21)

We assume that \(t \in (0,1)\). We have

$$\begin{aligned}&-\varDelta _p (tv_*^\lambda )+(\xi (z)+{\widehat{\xi }}_\rho )(tv_*^\lambda )^{p-1}\\&\quad =t^{p-1}[-\varDelta _p v_*^\lambda +(\xi (z)+{\widehat{\xi }}_\rho )(v_*^\lambda )^{p-1}]\\&\quad =t^{p-1}[c_1 (v_*^\lambda )^{q-1} -c_7(\lambda )(v_*^\lambda )^{r-1}+{\widehat{\xi }}_\rho (v_*^\lambda )^{p-1}]\\&\quad< c_1(tv_*^\lambda )^{q-1}-c_7(\lambda )(tv_*^\lambda )^{r-1} +{\widehat{\xi }}_\rho (tv_*^\lambda )^{p-1} \quad \text{(since } t \in (0,1) \text{ and } q<p<r)\\&\quad \le c_1(u_*^\lambda )^{q-1}-c_7(\lambda )(u_*^\lambda )^{r-1} +{\widehat{\xi }}_\rho (u_*^\lambda )^{p-1} \quad \text{(see } (21))\\&\quad =-\varDelta _p u_*^\lambda +(\xi (z)+{\widehat{\xi }}_\rho )(u_*^\lambda )^{p-1} \quad \text{ for } \text{ a.a. } z\in \varOmega . \end{aligned}$$

Invoking Proposition 4 (recall \(\beta >0\)), we have

$$\begin{aligned} u_*^\lambda -tv_*^\lambda \in D_+, \end{aligned}$$
(22)

where we recall that \({\widehat{C}}_+=\left\{ y \in C^1({\overline{\varOmega }}): y(z) \ge 0 \text{ for } \text{ all } z \in {\overline{\varOmega }}, \, \dfrac{\partial u}{\partial n}\Big |_{\partial \varOmega }\le 0 \right\} \).

Evidently (22) contradicts the maximality of \(t>0\). Therefore we must have \(t \ge 1\) and so

$$\begin{aligned} v_*^\lambda \le u_*^\lambda \quad \text{(see } (21)). \end{aligned}$$

Interchanging the roles of \(u_*^\lambda \in D_+\) and \(v_*^\lambda \in D_+\) in the above argument we also have

$$\begin{aligned}&u_*^\lambda \le v_*^\lambda ,\\&\quad \Rightarrow u_*^\lambda =v_*^\lambda . \end{aligned}$$

So, again we have proved uniqueness of the positive solution of problem (\(Au_\lambda \)). Recall that \(\lambda \rightarrow c_7(\lambda )\) is bounded on bounded sets of \(\lambda \in {\mathbb {R}}\). So, if \(B \subseteq {\mathbb {R}}\) is bounded, \({\widehat{c}}_7 \ge c_7(\lambda )\) for all \(\lambda \in B\) and \({\widehat{u}} \in D_+\) is the unique positive solution of the auxiliary problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varDelta _p u(z)+ \xi (z)u(z)^{p-1}=c_1 u(z)^{q-1}-{\widehat{c}}_7 u(z)^{r-1} &{}\quad \text{ in } \varOmega ,\\ \dfrac{\partial u}{\partial n_p} +\beta (z)u^{p-1}=0 &{}\quad \text{ on } \partial \varOmega , \end{array}\right. } \end{aligned}$$

(see Proposition 8), then \({\widehat{u}} \le u_*^\lambda \) for all \(\lambda \in B\).

Next using \(u_*^\lambda \in D_+\), we can have a lower bound for the elements of the set \(S(\lambda )\). This fact will be used to produce the smallest positive solution for problem \((P_{\lambda })\) when \(\lambda < {\widehat{\lambda }}_1\).

So, we have the following result.

Proposition 9

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\) hold and \(\lambda < {\widehat{\lambda }}_1\), then \(u_*^\lambda \le u\) for all \(u \in S(\lambda )\).

Proof

As before let \(\eta > \Vert \xi \Vert _\infty \). For \(u \in S(\lambda )\) we consider the following Carathéodory function

$$\begin{aligned} {\widehat{g}}_\lambda (z,x)={\left\{ \begin{array}{ll} 0 &{}\quad \text{ if } x<0,\\ c_1 x^{q-1}-c_7(\lambda )x^{r-1}+\eta x^{p-1} &{}\quad \text{ if } 0 \le x \le u(z),\\ c_1 u(z)^{q-1}-c_7(\lambda )u(z)^{r-1}+\eta u(z)^{p-1} &{}\quad \text{ if } u(z)<x. \end{array}\right. } \end{aligned}$$
(23)

We set \({\widehat{G}}_\lambda (z,x)= \int _0^x {\widehat{g}}_\lambda (z,s)ds\) and consider the \(C^1\)-functional \({\widehat{\psi }}_\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} {\widehat{\psi }}_\lambda (u)= \frac{1}{p}\vartheta (u) + \frac{\eta }{p}\Vert u\Vert _p^p - \int _\varOmega {\widehat{G}}_\lambda (z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From (23) and since \(\eta > \Vert \xi \Vert _\infty \), we see that the functional \({\widehat{\psi }}_\lambda \) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find \({\widehat{u}}_*^\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} {\widehat{\psi }}_\lambda ({\widehat{u}}^\lambda _*)=\inf \left[ {\widehat{\psi }}_\lambda (u) : u \in W^{1,p}(\varOmega ) \right] . \end{aligned}$$
(24)

As before, since \(q<p<r\), we have that

$$\begin{aligned}&{\widehat{\psi }}_\lambda ({\widehat{u}}^\lambda _*)<0={\widehat{\psi }}_\lambda (0),\\&\quad \Rightarrow {\widehat{u}}^\lambda _* \ne 0. \end{aligned}$$

From (24) we have

$$\begin{aligned}&{\widehat{\psi }}'_\lambda ({\widehat{u}}^\lambda _*)=0, \nonumber \\&\quad \Rightarrow \langle A({\widehat{u}}^\lambda _*),h \rangle + \int _\varOmega (\xi (z)+\eta ) |{\widehat{u}}^\lambda _*|^{p-2}{\widehat{u}}^\lambda _* h dz + \int _{\partial \varOmega } \beta (z)|{\widehat{u}}^\lambda _*|^{p-2}{\widehat{u}}^\lambda _* h d \sigma \nonumber \\&\quad = \int _\varOmega g_\lambda (z,{\widehat{u}}^\lambda _*) h dz\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ). \end{aligned}$$
(25)

In (25) first we choose \(h=-{\widehat{u}}^{\lambda ^-}_* \in W^{1,p}(\varOmega )\). We obtain

$$\begin{aligned}&\vartheta ({\widehat{u}}^{\lambda ^-}_*) + \eta \Vert {\widehat{u}}^{\lambda ^-}_*\Vert _p^p=0 \quad \text{(see } (23)),\\&\quad \Rightarrow c_{12} \Vert {\widehat{u}}^{\lambda ^-}_*\Vert ^p \le 0 \quad \text{ for } \text{ some } c_{12}>0~\text{(recall } \text{ that } \eta >\Vert \xi \Vert _\infty ),\\&\quad \Rightarrow {\widehat{u}}^{\lambda }_* \ge 0, \, {\widehat{u}}^{\lambda }_* \ne 0. \end{aligned}$$

Next in (25) we choose \(({\widehat{u}}^\lambda _*-u)^+ \in W^{1,p}(\varOmega )\). We have

$$\begin{aligned}&\langle A({\widehat{u}}^{\lambda }_*), ({\widehat{u}}^{\lambda }_*-u)^+\rangle + \int _\varOmega (\xi (z)+\eta ) ({\widehat{u}}^{\lambda }_*)^{p-1}({\widehat{u}}^{\lambda }_*-u)^+dz \\&\qquad + \int _{\partial \varOmega } \beta (z) ({\widehat{u}}^{\lambda }_*)^{p-1}({\widehat{u}}^{\lambda }_*-u)^+d \sigma \\&\quad = \int _\varOmega (c_1 u^{q-1} -c_7(\lambda ) u^{r-1}+\eta u^{p-1})({\widehat{u}}^{\lambda }_*-u)^+ dz \quad \text{(see } (23))\\&\quad \le \int _\varOmega (\lambda u^{p-1} +f(z,u)+\eta u^{p-1})({\widehat{u}}^{\lambda }_*-u)^+ dz \quad \text{(see } (12))\\&\quad = \langle A(u), ({\widehat{u}}^{\lambda }_*-u)^+\rangle + \int _\varOmega (\xi (z)+\eta ) u^{p-1}({\widehat{u}}^{\lambda }_*-u)^+dz \\&\qquad + \int _{\partial \varOmega } \beta (z) u^{p-1}({\widehat{u}}^{\lambda }_*-u)^+d \sigma ~\text{(recall } \text{ that } u \in S(\lambda )),\\&\quad \Rightarrow \, \langle A({\widehat{u}}^{\lambda }_*)-A(u), ({\widehat{u}}^{\lambda }_*-u)^+\rangle + \int _\varOmega (\xi (z)+\eta ) (({\widehat{u}}^{\lambda }_*)^{p-1}-u^{p-1})({\widehat{u}}^{\lambda }_*-u)^+dz\\&\qquad + \int _{\partial \varOmega } \beta (z) (({\widehat{u}}^{\lambda }_*)^{p-1}-u^{p-1})({\widehat{u}}^{\lambda }_*-u)^+d \sigma \le 0,\\&\quad \Rightarrow \,{\widehat{u}}^{\lambda }_* \le u \quad \text{(since } \eta > \Vert \xi \Vert _\infty \text{ and } \beta \ge 0, \text{ see } \text{ hypothesis } H(\beta )_1). \end{aligned}$$

Therefore, we have proved that

$$\begin{aligned}&{\widehat{u}}^{\lambda }_* \in [0,u]=\{v \in W^{1,p}(\varOmega ): 0 \le v(z) \le u(z) \text{ for } \text{ a.a. } z\in \varOmega \}, \, {\widehat{u}}^{\lambda }_* \ne 0,\\&\quad \Rightarrow {\widehat{u}}^{\lambda }_* \text{ is } \text{ a } \text{ positive } \text{ solution } \text{ of } (Au_{\lambda })~\text{(see } (25) \text{ and } (23)),\\&\quad \Rightarrow {\widehat{u}}^{\lambda }_*=u^{\lambda }_* \in D_+ \quad \text{(see } \text{ Proposition }~8). \end{aligned}$$

Finally we have

$$\begin{aligned} u^{\lambda }_* \le u \quad \text{ for } \text{ all } u \in S(\lambda ). \end{aligned}$$

\(\square \)

Proposition 10

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\) hold and \(\lambda < {\widehat{\lambda }}_1\), then problem \((P_{\lambda })\) admits a smallest positive solution \({\overline{u}}_\lambda \in D_+\).

Proof

As in Filippakis–Papageorgiou [5], we have that \(S(\lambda )\) is downward directed, that is, if \(u_1, u_2 \in S(\lambda )\), there is \(u \in S(\lambda )\) s.t. \(u \le u_1\), \(u \le u_2\). Invoking Lemma 3.10 of Hu–Papageorgiou [9] (p. 178), we can find \(\{u_n\}_{n \ge 1} \subseteq S(\lambda )\) decreasing s.t.

$$\begin{aligned} \inf S(\lambda )=\inf _{n \ge 1}u_n. \end{aligned}$$

We have

$$\begin{aligned} \langle A(u_n),h\rangle + \int _\varOmega \xi (z)u_n^{p-1}h dz + \int _{\partial \varOmega }\beta (z) u_n^{p-1}h d \sigma = \int _\varOmega (\lambda u_n^{p-1}+f(z,u_n))dz\nonumber \\ \end{aligned}$$
(26)

for all \(h \in W^{1,p}(\varOmega )\). Since \(u_n \le u_1 \in S(\lambda ) \subseteq D_+\), from (26) and hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\)(i) it follows that

$$\begin{aligned} \{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega ) \text{ is } \text{ bounded. } \end{aligned}$$

So, we may assume that

$$\begin{aligned} u_n \xrightarrow {w} {\overline{u}}_\lambda \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad u_n \rightarrow {\overline{u}}_\lambda \text{ in } L^{p}(\varOmega ) \text{ and } \text{ in } L^{p}(\partial \varOmega ). \end{aligned}$$
(27)

In (26) we choose \(h=u_n - {\overline{u}}_\lambda \in W^{1,p}(\varOmega )\), pass to the limit as \(n \rightarrow +\infty \) and use (27). Then we have

$$\begin{aligned}&\lim _{n \rightarrow +\infty }\langle A(u_n),u_n - {\overline{u}}_\lambda \rangle =0,\nonumber \\&\quad \Rightarrow u_n \rightarrow {\overline{u}}_\lambda \quad \text{ in } W^{1,p}(\varOmega )~\text{(see } \text{ Proposition }~2). \end{aligned}$$
(28)

If in (26) we pass to the limit as \(n \rightarrow +\infty \) and use (28), then

$$\begin{aligned}&\langle A({\overline{u}}_\lambda ),h \rangle +\int _\varOmega \xi (z){\overline{u}}_\lambda ^{p-1}h dz + \int _{\partial \varOmega } \beta (z){\overline{u}}_\lambda ^{p-1}h d \sigma = \int _\varOmega (\lambda {\overline{u}}_\lambda ^{p-1}+f(z,{\overline{u}}_\lambda ))h dz\\&\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ),\\&\quad \Rightarrow {\overline{u}}_\lambda \ge 0 \text{ is } \text{ a } \text{ solution } \text{ of } \text{ problem } (P_{\lambda }). \end{aligned}$$

From Proposition 9 we have

$$\begin{aligned}&u_*^\lambda \le u_n \quad \text{ for } \text{ all } n \in {\mathbb {N}},\\&\quad \Rightarrow u_*^\lambda \le {\overline{u}}_\lambda \quad \text{(see } (28)). \end{aligned}$$

Hence \({\overline{u}}_\lambda \ne 0\) and so we conclude that

$$\begin{aligned} {\overline{u}}_\lambda \in S(\lambda ) \subseteq D_+ \quad \text{ and } \quad {\overline{u}}_\lambda =\inf S(\lambda ). \nonumber \\ \end{aligned}$$

\(\square \)

Next we examine the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \((-\infty , {\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\).

Proposition 11

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is nondecreasing (that is, if \(\lambda < \mu \), then \({\overline{u}}_\lambda \le {\overline{u}}_\mu \)) and left continuous.

Proof

Suppose that \(\lambda , \mu \in {\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) and \(\lambda < \mu \). Let \({\overline{u}}_\mu \in S(\mu )\) be the minimal positive solution of problem \((P_\mu )\) (see Proposition 10). For \(\eta > \Vert \xi \Vert _\infty \) we introduce the following Carathéodory function

$$\begin{aligned} e_\lambda (z,x)={\left\{ \begin{array}{ll} 0 &{} \quad \text{ if } x<0,\\ (\lambda + \eta ) x^{p-1}+f(z,x) &{}\quad \text{ if } 0 \le x \le {\overline{u}}_\mu (z),\\ (\lambda + \eta ) {\overline{u}}_\mu (z)^{p-1}+f(z,{\overline{u}}_\mu (z)) &{} \quad \text{ if } {\overline{u}}_\mu (z)<x. \end{array}\right. } \end{aligned}$$
(29)

We set \(E_\lambda (z,x)= \int _0^x e_\lambda (z,s)ds\) and consider the \(C^1\)-functional \({\widetilde{\psi }}_\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} {\widetilde{\psi }}_\lambda (u)= \frac{1}{p}\vartheta (u) + \frac{\eta }{p}\Vert u\Vert _p^p - \int _\varOmega E_\lambda (z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From (29) and since \(\eta > \Vert \xi \Vert _\infty \), we see that \({\widetilde{\psi }}_\lambda \) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find \(u_\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} {\widetilde{\psi }}_\lambda (u_\lambda )=\inf \left[ {\widetilde{\psi }}_\lambda (u) : u \in W^{1,p}(\varOmega ) \right] . \end{aligned}$$
(30)

Let \(m_\mu =\min _{{\overline{\varOmega }}} {\overline{u}}_\mu >0\) (recall that \({\overline{u}}_\mu \in D_+\)) and choose \(t \in (0,1)\) small s.t. \(t {\widehat{u}}_1(z) \le \min \{m_\mu ,\delta \}\) for all \(z \in {\overline{\varOmega }}\) (here \(\delta >0\) is as in hypothesis \(H_1\)(iii)). Because \(q<p\) and by choosing \(t \in (0,1)\) even smaller if necessary, we have that

$$\begin{aligned}&{\widetilde{\psi }}_\lambda (t {\widehat{u}}_1)<0,\\&\quad \Rightarrow {\widetilde{\psi }}_\lambda (u_\lambda )<0={\widetilde{\psi }}_\lambda (0) \quad \text{(see } (30))\\&\quad \Rightarrow u_\lambda \ne 0. \end{aligned}$$

From (30) we have

$$\begin{aligned}&{\widetilde{\psi }}'_\lambda (u_\lambda )=0, \nonumber \\&\quad \Rightarrow \langle A(u_\lambda ),h \rangle + \int _\varOmega (\xi (z)+\eta ) |u_\lambda |^{p-2}u_\lambda h dz + \int _{\partial \varOmega } \beta (z)|u_\lambda |^{p-2}u_\lambda h d \sigma \nonumber \\&\quad = \int _\varOmega e_\lambda (z,u_\lambda ) h dz\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ). \end{aligned}$$
(31)

As in the proof of Proposition 9, using this time (31) and (29), we show that

$$\begin{aligned}&u_\lambda \in [0, {\overline{u}}_\mu ]=\{v \in W^{1,p}(\varOmega ): 0 \le v(z) \le {\overline{u}}_\mu (z) \text{ for } \text{ a.a. } z \in \varOmega \}, \quad u_\lambda \ne 0, \\&\quad \Rightarrow u_\lambda \in S(\lambda ) \subseteq D_+ \quad \text{(see } (29), (31)),\\&\quad \Rightarrow {\overline{u}}_\lambda \le {\overline{u}}_\mu . \end{aligned}$$

This proves that \(\lambda \rightarrow {\overline{u}}_\lambda \) is nondecreasing.

Next we show the left continuity of this map. So, let \(\{\lambda _n, \lambda \}_{n \ge 1} \subseteq {\mathcal {L}}\) and suppose that \(\lambda _n \rightarrow \lambda ^-\). From the first part of the proof we have \({\overline{u}}_{\lambda _n} \le {\overline{u}}_\lambda \) for all \(n \in {\mathbb {N}}\) and so we infer that \(\{{\overline{u}}_{\lambda _n}\}_{n \ge 1} \subseteq W^{1,p}(\varOmega )\) is bounded. So, we may assume that

$$\begin{aligned} {\overline{u}}_{\lambda _n} \xrightarrow {w} {\widetilde{u}} \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad {\overline{u}}_{\lambda _n} \rightarrow {\widetilde{u}} \text{ in } L^{p}(\varOmega ) \text{ and } \text{ in } L^{p}(\partial \varOmega ). \end{aligned}$$
(32)

We have

$$\begin{aligned} \langle A({\overline{u}}_{\lambda _n}),h \rangle +\int _\varOmega \xi (z){\overline{u}}_{\lambda _n}^{p-1}h dz + \int _{\partial \varOmega } \beta (z){\overline{u}}_{\lambda _n}^{p-1}h d \sigma = \int _\varOmega (\lambda _n {\overline{u}}_{\lambda _n}^{p-1}+f(z,{\overline{u}}_{\lambda _n}))h dz\nonumber \\ \end{aligned}$$
(33)

for all \(h \in W^{1,p}(\varOmega )\), all \(n \in {\mathbb {N}}\). In (33) we choose \(h= {\overline{u}}_{\lambda _n}-{\widetilde{u}} \in W^{1,p}(\varOmega )\), pass to the limit as \(n \rightarrow +\infty \) and use (32). Then

$$\begin{aligned}&\lim _{n \rightarrow +\infty }\langle A({\overline{u}}_{\lambda _n}),{\overline{u}}_{\lambda _n} - {\widetilde{u}} \rangle =0,\nonumber \\&\quad \Rightarrow {\overline{u}}_{\lambda _n} \rightarrow {\widetilde{u}} \quad \text{ in } W^{1,p}(\varOmega ) \quad \text{(see } \text{ Proposition }~2). \end{aligned}$$
(34)

So, if in (33) we pass to the limit as \(n \rightarrow +\infty \) and use (34), then

$$\begin{aligned} \langle A({\widetilde{u}}),h \rangle +\int _\varOmega \xi (z){\widetilde{u}}^{p-1}h dz + \int _{\partial \varOmega } \beta (z){\widetilde{u}}^{p-1}h d \sigma = \int _\varOmega (\lambda {\widetilde{u}}^{p-1}+f(z,{\widetilde{u}}))h dz\nonumber \\ \end{aligned}$$
(35)

for all \(h \in W^{1,p}(\varOmega )\).

Set \(B=\{\lambda _n\}_{n \ge 1}\) and let \({\widehat{c}}_7 \ge c_7({\widetilde{\lambda }})\) for all \({\widetilde{\lambda }} \in B\) (recall that \(\lambda \rightarrow c_7(\lambda )\) is bounded on bounded sets). Consider \({\widehat{u}} \in D_+\) the unique positive solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varDelta _p u(z)+ \xi (z)u(z)^{p-1}=c_1 u(z)^{q-1}-{\widehat{c}}_7 u(z)^{r-1} &{}\quad \text{ in } \varOmega ,\\ \dfrac{\partial u}{\partial n_p} +\beta (z)u^{p-1}=0 &{}\quad \text{ on } \partial \varOmega , \end{array}\right. } \end{aligned}$$

(see Proposition 8 and the Remark following it).

We know that

$$\begin{aligned}&{\widehat{u}} \le {\overline{u}}_{\lambda _n} \quad \text{ for } \text{ all } n \in {\mathbb {N}},\\&\quad \Rightarrow {\widehat{u}} \le {\widetilde{u}}, \text{ that } \text{ is, } {\widetilde{u}} \ne 0. \end{aligned}$$

Then from (35) we infer that \({\widetilde{u}} \in S(\lambda )\).

Suppose that \({\widetilde{u}} \ne {\overline{u}}_\lambda \). Then we can find \(z_0 \in {\overline{\varOmega }}\) s.t.

$$\begin{aligned} {\overline{u}}_\lambda (z_0) < {\widetilde{u}}(z_0). \end{aligned}$$
(36)

From Theorem 2 of Lieberman [13], we know that there exist \(M>0\) and \(\tau \in (0,1)\) s.t.

$$\begin{aligned} {\overline{u}}_{\lambda _n} \in C^{1,\tau }({\overline{\varOmega }})\quad \text{ and } \quad \Vert {\overline{u}}_{\lambda _n}\Vert _{C^{1,\tau }({\overline{\varOmega }})} \le M \quad \text{ for } \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(37)

Exploiting the compact embedding of \(C^{1,\tau }({\overline{\varOmega }})\) into \(C^{1}({\overline{\varOmega }})\) and using (34), from (37) we have

$$\begin{aligned}&{\overline{u}}_{\lambda _n} \rightarrow {\widetilde{u}}\quad \text{ in } C^{1}({\overline{\varOmega }}),\\&\quad \Rightarrow {\overline{u}}_{\lambda _n}(z_0) > {\overline{u}}_{\lambda }(z_0), \quad \text{ for } \text{ all } n \ge n_0 \quad \text{(see } (36)),\nonumber \end{aligned}$$
(38)

which contradicts the monotonicity of \(\lambda \rightarrow {\overline{u}}_{\lambda }\) (recall \(\lambda _n < \lambda \) for all \(n \in {\mathbb {N}}\)). Therefore \({\widetilde{u}}={\overline{u}}_{\lambda }\) and so from (38) we conclude that the map \(\lambda \rightarrow {\overline{u}}_{\lambda }\) is left continuous from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\). \(\square \)

If we strengthen the conditions on the perturbation \(f(z,\cdot )\), we can have uniqueness of the positive solution for problem \((P_{\lambda })\), \(\lambda < {\widehat{\lambda }}_1\).

The new hypotheses on f(zx) are the following:

\(H_2\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x)>0\) for all \(x >0\), hypotheses \(H_2\)(i), (ii), (iii) are the same as the corresponding hypotheses \(H_1\)(i), (ii), (iii) and

  1. (iv)

    for a.a. \(z \in \varOmega \) the function \(x \rightarrow \dfrac{f(z,x)}{x^{p-1}}\) is strictly decreasing on \((0,+\infty )\).

Example 2

The function \(f_1(x)=x^{q-1}\) for all \(x \ge 0\) with \(1<q<p\) satisfies hypotheses \(H_2\). On the other hand the function

$$\begin{aligned} f_2(x)={\left\{ \begin{array}{ll}x^{q-1}-x^{\tau -1} &{}\quad \text{ if } x \in [0,1],\\ \ln x^{p-1} &{}\quad \text{ if } 1<x,\end{array}\right. } \text{ with } 1<q<p, q< \tau , \end{aligned}$$

need not satisfy hypotheses \(H_2\) unless additional restrictions are imposed on the exponents \(q, \tau \).

Proposition 12

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_2\) hold and \(\lambda < {\widehat{\lambda }}_1\), then problem \((P_{\lambda })\) has a unique positive solution \(u_\lambda \in D_+\).

Proof

Existence follows from Proposition 7. The uniqueness is proved as in the proof of Proposition 8 using the nonlinear Picone’s identity (for an alternative approach, see the Remark following the proof of Proposition 8). \(\square \)

In this case, because of the uniqueness of the positive solution, Proposition 11 takes the following form:

Proposition 13

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_2\) hold, then the map \(\lambda \rightarrow u_\lambda \) is nondecreasing and continuous from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\).

In fact, by strengthening hypothesis \(H(\beta )_1\) (since we will use Proposition 4) and with an additional condition on the perturbation \(f(z,\cdot )\) we can improve the monotonicity property of the maps \(\lambda \rightarrow {\overline{u}}_\lambda \) in Proposition 11 and of the map \(\lambda \rightarrow u_\lambda \) in Proposition 12.

So, we introduce the following conditions on the functions \(\beta (z)\) and f(zx):

\(H(\beta )_2\): \(\beta \in C^{0,\alpha }(\partial \varOmega )\) with \(\alpha \in (0,1)\) and \(\beta (z)>0\) for all \(z \in \partial \varOmega \).

\(H_3\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x)>0\) for all \(x >0\), hypotheses \(H_3\)(i), (ii), (iii) are the same as the corresponding hypotheses \(H_1\)(i), (ii), (iii) and

  1. (iv)

    for every \(\rho >0\), there exists \({\widehat{\xi }}_\rho >0\) s.t. for a.a. \(z \in \varOmega \) the function \(x \rightarrow f(z,x)+ {\widehat{\xi }}_\rho x^{p-1}\) is nondecreasing on \([0,\rho ]\).

We also introduce a corresponding strengthening of hypotheses \(H_2\).

\(H_4\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x)>0\) for all \(x >0\), hypotheses \(H_4\)(i), (ii), (iii), (iv) are the same as the corresponding hypotheses \(H_2\)(i), (ii), (iii), (iv) and

  1. (v)

    for every \(\rho >0\), there exists \({\widehat{\xi }}_\rho >0\) s.t. for a.a. \(z \in \varOmega \), the function \(x \rightarrow f(z,x)+ {\widehat{\xi }}_\rho x^{p-1}\) is nondecreasing on \([0,\rho ]\).

Proposition 14

If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_3\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) is strictly increasing from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) in the sense that \(\lambda < \mu \, \Rightarrow \, {\overline{u}}_\mu - {\overline{u}}_\lambda \in {\mathrm{int }}\, {\widehat{C}}_+\) with \(D_0=\{z \in \partial \varOmega : {\overline{u}}_\mu (z)= {\overline{u}}_\lambda (z)\}\).

Proof

Let \(\lambda ,\mu \in {\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) with \(\lambda < \mu \). From Proposition 11 we know that

$$\begin{aligned} {\overline{u}}_\lambda \le {\overline{u}}_\mu . \end{aligned}$$

Let \(\rho =\Vert {\overline{u}}_\mu \Vert _\infty \) and let \({\widehat{\xi }}_\rho >0\) be as postulated by hypothesis \(H_3\)(iv). We set

$$\begin{aligned} {\widetilde{\xi }}_\rho ={\widehat{\xi }}_\rho + \max \{-\mu ,0\}. \end{aligned}$$

For \(\delta >0\) we define \({\overline{u}}_\lambda ^\delta = {\overline{u}}_\lambda + \delta \in D_+\). We have

$$\begin{aligned}&-\varDelta _p {\overline{u}}_\lambda ^\delta + (\xi (z)+{\widetilde{\xi }}_\rho )({\overline{u}}_\lambda ^\delta )^{p-1}\nonumber \\&\quad \le -\varDelta _p {\overline{u}}_\lambda + (\xi (z)+{\widetilde{\xi }}_\rho ){\overline{u}}_\lambda ^{p-1}+ \chi (\delta ) \quad \text{ with } \chi (\delta ) \rightarrow 0^+ \text{ as } \delta \rightarrow 0^+\nonumber \\&\quad = \lambda {\overline{u}}_\lambda ^{p-1}+f(z,{\overline{u}}_\lambda )+{\widetilde{\xi }}_\rho {\overline{u}}_\lambda ^{p-1}+ \chi (\delta )\nonumber \\&\quad = \mu {\overline{u}}_\lambda ^{p-1}+f(z,{\overline{u}}_\lambda )+{\widetilde{\xi }}_\rho {\overline{u}}_\lambda ^{p-1}-(\mu -\lambda ){\overline{u}}_\lambda ^{p-1} + \chi (\delta ). \end{aligned}$$
(39)

Note that if \(\mu <0\), then \({\widetilde{\xi }}_\rho ={\widehat{\xi }}_\rho +|\mu |\) and we have

$$\begin{aligned}&0 \le \left[ f(z,{\overline{u}}_\mu ) + {\widehat{\xi }}_\rho {\overline{u}}_\mu ^{p-1}-(f(z,{\overline{u}}_\lambda )+{\widehat{\xi }}_\rho {\overline{u}}_\lambda ^{p-1})\right] +(|\mu |+\mu ) ({\overline{u}}_\mu ^{p-1}-{\overline{u}}_\lambda ^{p-1})\\&\quad \Leftrightarrow \mu {\overline{u}}_\lambda ^{p-1}+f(z,{\overline{u}}_\lambda )+{\widetilde{\xi }}_\rho {\overline{u}}_\lambda ^{p-1} \le \mu {\overline{u}}_\mu ^{p-1}+f(z,{\overline{u}}_\mu )+{\widetilde{\xi }}_\rho {\overline{u}}_\mu ^{p-1}. \end{aligned}$$

If \(\mu \ge 0\), then \({\widetilde{\xi }}_\rho ={\widehat{\xi }}_\rho \) and using hypothesis \(H_3\)(iv) we have

$$\begin{aligned} \mu {\overline{u}}_\lambda ^{p-1} +f(z,{\overline{u}}_\lambda )+{\widehat{\xi }}_\rho {\overline{u}}_\lambda ^{p-1} \le \mu {\overline{u}}_\mu ^{p-1}+f(z,{\overline{u}}_\mu )+{\widehat{\xi }}_\rho {\overline{u}}_\mu ^{p-1}. \end{aligned}$$

Returning to (39), we have

$$\begin{aligned}&-\varDelta _p {\overline{u}}_\lambda ^\delta + (\xi (z)+{\widetilde{\xi }}_\rho )({\overline{u}}_\lambda ^\delta )^{p-1}\nonumber \\&\quad \le \mu {\overline{u}}_\mu ^{p-1}+f(z,{\overline{u}}_\mu )+{\widetilde{\xi }}_\rho {\overline{u}}_\mu ^{p-1}-(\mu -\lambda ){\overline{u}}_\lambda ^{p-1} + \chi (\delta )\nonumber \\&\quad = -\varDelta _p {\overline{u}}_\mu +{\widetilde{\xi }}_\rho {\overline{u}}_\mu ^{p-1}-(\mu -\lambda ){\overline{u}}_\lambda ^{p-1} + \chi (\delta ). \end{aligned}$$
(40)

Since \(\mu >\lambda \) and \({\overline{u}}_\lambda \in D_+\), we have

$$\begin{aligned} 0 < {\widehat{m}} \le (\mu -\lambda ){\overline{u}}_\lambda (z)^{p-1}\quad \text{ for } \text{ all } z \in {\overline{\varOmega }}. \end{aligned}$$

Then since \(\chi (\delta ) \rightarrow 0^+\) as \(\delta \rightarrow 0^+\), for \(\delta >0\) small we have

$$\begin{aligned} {\widehat{m}}-\chi (\delta )>0. \end{aligned}$$

Using this in (40) we have

$$\begin{aligned}&-\varDelta _p {\overline{u}}_\lambda ^\delta + (\xi (z)+{\widetilde{\xi }}_\rho )({\overline{u}}_\lambda ^\delta )^{p-1}< -\varDelta _p {\overline{u}}_\mu +(\xi (z) +{\widetilde{\xi }}_\rho ){\overline{u}}_\mu \\&\quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } \delta >0 \text{ small, }\\&\quad \Rightarrow {\overline{u}}_\mu - {\overline{u}}_\lambda \in {\mathrm{int }}\, {\widehat{C}}_+, \quad \text{(see } \text{ Proposition }~4 \text{ and } \text{ the } \text{ Remark } \text{ that } \text{ follows) }. \end{aligned}$$

In this case in the definition of \({\widehat{C}}_+\), \(D_0=\{z \in \partial \varOmega : {\overline{u}}_\mu (z)={\overline{u}}_\lambda (z)\}\). \(\square \)

Similarly we have:

Proposition 15

If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_4\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) is strictly increasing from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\).

The next theorem summarizes the situation for problem \((P_{\lambda })\) when the perturbation \(f(z,\cdot )\) is \((p-1)\)-sublinear.

Theorem 1

We have:

  1. 1.

    If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_1\) hold, then

    1. (a)

      for all \(\lambda \ge {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has no positive solution;

    2. (b)

      for all \(\lambda < {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has at least one positive solution and it admits a smallest positive solution \({\overline{u}}_\lambda \in D_+\);

    3. (c)

      the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is nondecreasing (that is, if \(\lambda \le \mu \), then \({\overline{u}}_\lambda \le {\overline{u}}_\mu \)) and left continuous.

  2. 2.

    If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_3\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is strictly increasing as in Proposition 14.

  3. 3.

    If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_2\) hold and \(\lambda < {\widehat{\lambda }}_1\), then problem \((P_{\lambda })\) has a unique solution \(u_\lambda \in D_+\) and the map \(\lambda \rightarrow u_\lambda \) from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is nondecreasing and continuous.

  4. 4.

    If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_4\) hold, then the solution map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is strictly increasing.

4 \((p-1)\)-superlinear perturbation

In this section we consider the case where the perturbation \(f(z,\cdot )\) is \((p-1)\)-superlinear. In this case uniqueness of the solution fails and the problem exhibits a bifurcation-type behaviour, namely there are no positive solutions for all \(\lambda \ge {\widehat{\lambda }}_1\) and there are at least two positive solutions for \(\lambda < {\widehat{\lambda }}_1\).

The new hypotheses on the perturbation term f(zx) are the following:

\(H_5\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \) \(f(z,0)=0\), \(f(z,x)\ge 0\) for all \(x > 0\), there exist \(\varOmega _0 \subseteq \varOmega \) with \(|\varOmega _0|_N>0\) s.t. \(f(z,x)>0\) for all \(z \in \varOmega _0\), all \(x>0\) and

  1. (i)

    \(f(z,x) \le a(z)(1+x^{r-1})\) for a.a. \(z \in \varOmega \), all \(x \ge 0\), with \(a \in L^\infty (\varOmega )_+\), \(r \in (p,p^*)\);

  2. (ii)

    if \(F(z,x)=\int _0^xf(z,s)ds\), then

    $$\begin{aligned} \lim _{x \rightarrow + \infty }\dfrac{F(z,x)}{x^{p}}=+\infty \quad \text{ uniformly } \text{ for } \text{ a.a. } z\in \varOmega \end{aligned}$$

    and there exists \(\tau \in (\max \{1,(r-p)\frac{N}{p}\},p^*)\) s.t.

    $$\begin{aligned} 0< {\widetilde{\xi }} \le \liminf _{x \rightarrow +\infty } \dfrac{f(z,x)x-pF(z,x)}{x^\tau } \quad \text{ uniformly } \text{ for } \text{ a.a. } z \in \varOmega ; \end{aligned}$$
  3. (iii)

    \(\lim _{x \rightarrow 0^+}\dfrac{f(z,x)}{x^{p-1}}=0\) uniformly for a.a. \(z \in \varOmega \).

Remark 4

As we did for the “sublinear” case, since we are looking for positive solutions and the above hypotheses concern the positive semiaxis, without any loss of generality, we may assume that \(f(z,x)=0\) for a.a. \(z \in \varOmega \), all \(x < 0\). Hypothesis \(H_5\)(ii) implies that for a.a. \(z \in \varOmega \) \(f(z,\cdot )\) is \((p-1)\)-superlinear. However, note that we do not use the usual in such cases “Ambrosetti–Rabinowitz condition” (the AR-condition for short, unilateral version since we are looking for positive solutions), which says that there exist \(q>p\) and \(M>0\) s.t.

$$\begin{aligned}&0<qF(z,x) \le f(z,x)x \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge M, \end{aligned}$$
(41)
$$\begin{aligned}&0< {\mathrm{ess}}\inf _{\varOmega } F(\cdot ,M) \end{aligned}$$
(42)

(see Ambrosetti–Rabinowitz [3] and Mugnai [15]). Integrating (41) and using (42) we obtain

$$\begin{aligned} c_{13}x^q \le F(z,x) \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge M, \text{ some } c_{13}>0. \end{aligned}$$
(43)

Hence from (41) and (43) we infer that near \(+\infty \), \(f(z,\cdot )\) exhibits at least \((q-1)\)-polynomial growth. Our hypothesis \(H_5\)(ii) is more general. Indeed, suppose that the AR-condition holds. We may assume that \(q > \max \{1, (r-p) \frac{N}{p}\}\). We have

$$\begin{aligned}&\frac{f(z,x)x-pF(z,x)}{x^q}=\frac{f(z,x)x-qF(z,x)}{x^q}+(q-p)\frac{F(z,x)}{x^q}\\&\quad \ge (q-p)\frac{F(z,x)}{x^q} \quad \text{(see } (41))\\&\quad \ge (q-p)c_{13}>0\quad \text{(see } (43)),\\&\quad \Rightarrow \liminf _{x \rightarrow + \infty } \frac{f(z,x)x-pF(z,x)}{x^q} \ge (q-p)c_{13}>0 \quad \text{ uniformly } \text{ for } \text{ a.a. } z \in \varOmega ,\\&\quad \Rightarrow \text{ hypothesis } H_5\text{(ii) } \text{ holds }. \end{aligned}$$

The function

$$\begin{aligned} f(x)=x^{p-1} \ln (1+x) \quad \text{ for } \text{ all } x\ge 0 \end{aligned}$$

satisfies hypotheses \(H_5\), but not the AR-condition (see (41)).

From Propositions 5 and 6 we have

$$\begin{aligned} S(\lambda )&\subseteq D_+ \quad \text{ for } \text{ all } \lambda \in {\mathbb {R}},\\ S(\lambda )&= \emptyset \quad \text{ for } \text{ all } \lambda \ge {\widehat{\lambda }}_1. \end{aligned}$$

It follows that \({\mathcal {L}} \subseteq (-\infty , {\widehat{\lambda }}_1)\). In the next proposition we show that equality holds.

Proposition 16

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_5\) hold, then \({\mathcal {L}} = (-\infty , {\widehat{\lambda }}_1)\).

Proof

We fix \(\lambda \in (-\infty , {\widehat{\lambda }}_1)\) and consider the Carathéodory function \(k_\lambda (z,x)\) defined by

$$\begin{aligned} k_\lambda (z,x)= {\left\{ \begin{array}{ll} 0 &{} \quad \text{ if } x \le 0,\\ \lambda x^{p-1}+f(z,x) &{} \quad \text{ if } 0<x.\end{array}\right. } \end{aligned}$$
(44)

We set \(K_\lambda (z,x)= \int _0^x k_\lambda (z,x)ds\) and consider the \(C^1\)-functional \(w_\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} w_\lambda (u)= \frac{1}{p}\vartheta (u) + \frac{\eta }{p}\Vert u^-\Vert _p^p - \int _\varOmega K_\lambda (z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

As before \(\eta > \Vert \xi \Vert _\infty \). Hypotheses \(H_5\)(i), (iii) imply that given \(\varepsilon >0\), we can find \(c_{14} =c_{14}(\varepsilon )>0\) s.t.

$$\begin{aligned} F(z,x) \le \frac{\varepsilon }{p}x^p+c_{14}x^r \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge 0. \end{aligned}$$
(45)

Choosing \(\varepsilon \in (0, {\widehat{\lambda }}_1-\lambda )\) (recall \(\lambda < {\widehat{\lambda }}_1\)), for every \(u \in W^{1,p}(\varOmega )\) we have

$$\begin{aligned} w_\lambda (u)&\ge \frac{1}{p}\left[ \vartheta (u^-)+\eta \Vert u^-\Vert _p^p\right] + \frac{1}{p}\vartheta (u^+) - \frac{\lambda +\varepsilon }{p}\Vert u^+\Vert _p^p-c_{14}\Vert u^+\Vert _r^r\nonumber \\&\quad \text{(see } (44) \text{ and } (45)).\nonumber \\&\ge c_{15} \Vert u\Vert ^p-c_{16}\Vert u\Vert ^r \quad \text{ for } \text{ some } c_{15},c_{16}>0,\nonumber \\&\quad \text{(use } \text{ Lemma }~1 \text{ and } \text{ recall } \eta > \Vert \xi \Vert _\infty ). \end{aligned}$$
(46)

Since \(p<r\), from (46) we infer that \(u=0\) is a strict local minimizer of \(w_\lambda \). So, we can find \(\rho \in (0,1)\) small s.t.

$$\begin{aligned} w_\lambda (0)=0 < \inf \left[ w_\lambda : \Vert u\Vert =\rho \right] =m^\lambda _\rho \end{aligned}$$
(47)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 29).

Hypothesis \(H_5\)(ii) implies that

$$\begin{aligned} w_\lambda (t {\widehat{u}}_1) \rightarrow -\infty \quad \text{ as } t \rightarrow +\infty . \end{aligned}$$
(48)

Claim: \(w_\lambda \) satisfies the C-condition.

Let \(\{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega )\) be a sequence s.t.

$$\begin{aligned}&|w_\lambda (u_n)| \le M_1 \quad \text{ for } \text{ some } M_1>0, \text{ all } n \in {\mathbb {N}}, \end{aligned}$$
(49)
$$\begin{aligned}&(1+\Vert u_n\Vert )w'_\lambda (u_n) \rightarrow 0 \quad \text{ in } W^{1,p}(\varOmega )^* \text{ as } n \rightarrow +\infty . \end{aligned}$$
(50)

From (50) we have

$$\begin{aligned}&\bigg |\langle A(u_n),h\rangle + \int _\varOmega \xi (z)|u_n|^{p-2}u_n h dz + \int _{\partial \varOmega }\beta (z) |u_n|^{p-2}u_n h d \sigma \nonumber \\&\quad -\eta \int _\varOmega (u_n^-)^{p-1}h d \sigma -\int _\varOmega k_\lambda (z,u_n)hdz\bigg | \nonumber \\&\quad \le \frac{\varepsilon _n\Vert h\Vert }{1+\Vert u_n\Vert }\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ) \text{ with } \varepsilon _n \rightarrow 0^+. \end{aligned}$$
(51)

In (51) we choose \(h=-u_n^- \in W^{1,p}(\varOmega )\). Using (44) we obtain

$$\begin{aligned}&\left| \vartheta (u_n^-)+\eta \Vert u_n^-\Vert _p^p \right| \le \varepsilon _n \quad \text{ for } \text{ all } n \in {\mathbb {N}},\nonumber \\&\quad \Rightarrow c_{17} \Vert u_n^-\Vert ^p \le \varepsilon _n \quad \text{ for } \text{ all } n \in {\mathbb {N}}, \text{ some } c_{17}>0~\text{(recall } \text{ that } \eta >\Vert \xi \Vert _\infty ),\nonumber \\&\quad \Rightarrow u_n^- \rightarrow 0 \text{ in } W^{1,p}(\varOmega ). \end{aligned}$$
(52)

From (49), (52) and (44) it follows that

$$\begin{aligned} \vartheta (u_n^+)-\int _\varOmega [\lambda (u_n^+)^p+pF(z,u_n^+)]dz\le M_2 \quad \text{ for } \text{ some } M_2>0, \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(53)

In (51) we choose \(h=u_n^+ \in W^{1,p}(\varOmega )\). Then

$$\begin{aligned} - \vartheta (u_n^+)+\int _\varOmega [\lambda (u_n^+)^p+f(z,u_n^+)u_n^+]dz\le \varepsilon _n \quad \text{ for } \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(54)

Adding (53) and (54) we obtain

$$\begin{aligned} \int _\varOmega [f(z,u_n^+)u_n^+ -pF(z,u_n^+)]dz\le M_3 \quad \text{ for } \text{ some } M_3>0, \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(55)

Hypotheses \(H_5\)(i), (ii) imply that we can find \({\widetilde{\xi }}_0 \in (0, {\widetilde{\xi }})\) and \(c_{18}>0\) s.t.

$$\begin{aligned} {\widetilde{\xi }}_0 x^\tau -c_{18} \le f(z,x)x-pF(z,x) \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \ge 0. \end{aligned}$$
(56)

Using (56) in (55), we infer that

$$\begin{aligned} \{u_n^+\}_{n\ge 1} \subseteq L^\tau (\varOmega ) \quad \text{ is } \text{ bounded. } \end{aligned}$$
(57)

First suppose that \(N > p\). Clearly in hypothesis \(H_5\)(ii), we can always assume that \(\tau<r<p^*\) (recall that \(p^*=+\infty \) if \(p \ge N\)). Let \(t \in (0,1)\) be such that

$$\begin{aligned} \frac{1}{r}=\frac{1-t}{\tau }+\frac{t}{p^*}. \end{aligned}$$
(58)

From the interpolation inequality (see, for example, Gasiński–Papageorgiou [8] (p. 905)), we have

$$\begin{aligned}&\Vert u_n^+\Vert _r \le \Vert u_n^+\Vert _\tau ^{1-t}\Vert u_n^+\Vert _{p^*}^t,\nonumber \\&\quad \Rightarrow \Vert u_n^+\Vert ^r_r \le M_4\Vert u_n^+\Vert ^{tr} \quad \text{ for } \text{ some } M_4>0, \text{ all } n \in {\mathbb {N}}\\&\qquad \text{(see } (57) \text{ and } \text{ use } \text{ the } \text{ Sobolev } \text{ embedding } \text{ theorem). }\nonumber \end{aligned}$$
(59)

In (51) we choose \(h=u_n^+ \in W^{1,p}(\varOmega )\). Then

$$\begin{aligned}&\vartheta (u_n^+)-\int _\varOmega [\lambda (u_n^+)^p+f(z,u_n^+)u_n^+]dz\le \varepsilon _n \quad \text{ for } \text{ all } n \in {\mathbb {N}}~\text{(see } (44)),\nonumber \\&\quad \Rightarrow \vartheta (u_n^+) \le c_{19}(1+\Vert u_n^+\Vert ^r_r) \quad \text{ for } \text{ some } c_{19}>0, \text{ all } n \in {\mathbb {N}}\nonumber \\&\qquad \text{(see } \text{ hypothesis } H_5\text{(i) } \text{ and } \text{ recall } \text{ that } r>p),\nonumber \\&\quad \Rightarrow \vartheta (u_n^+) \le c_{20}(1+\Vert u_n^+\Vert ^{tr}) \quad \text{ for } \text{ some } c_{20}>0, \text{ all } n \in {\mathbb {N}}~\text{(see } (59)). \end{aligned}$$
(60)

From hypothesis \(H_5\)(i) we see that we can always take \(r \in (p,p^*)\) close to \(p^*\) and as \(r \rightarrow (p^*)^-\), we have \(\tau >p\). So, there is no loss of generality in assuming that \(\tau >p\). Then from (60) and (57), we have

$$\begin{aligned}&\vartheta (u_n^+) + \eta \Vert u_n^+\Vert _p^p \le c_{21}(1+\Vert u_n^+\Vert ^{tr}) \quad \text{ for } \text{ some } c_{21}>0, \text{ all } n \in {\mathbb {N}}, \nonumber \\&\quad \Rightarrow \Vert u_n^+\Vert ^p \le c_{22}(1+\Vert u_n^+\Vert ^{tr}) \, \text{ for } \text{ some } c_{22}>0, \text{ all } n \in {\mathbb {N}} \text{(recall } \text{ that } \eta > \Vert \xi \Vert _\infty ). \end{aligned}$$
(61)

From hypothesis \(H_5\)(ii) and (58) we see that

$$\begin{aligned}&tr <p,\nonumber \\&\quad \Rightarrow \{u_n^+\}_{n \ge 1} \subseteq W^{1,p}(\varOmega ) \quad \text{ is } \text{ bounded } \text{(see } (61)),\nonumber \\&\quad \Rightarrow \{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega ) \quad \text{ is } \text{ bounded } \text{(see } (52)). \end{aligned}$$
(62)

If \(N\le p\), then \(p^*=+\infty \), while the Sobolev embedding theorem says that \(W^{1,p}(\varOmega ) \hookrightarrow L^q(\varOmega )\) for all \(q \in [1,+\infty )\). Let \(q>r>\tau \) and choose \(t \in (0,1)\) s.t.

$$\begin{aligned}&\frac{1}{r}=\frac{1-t}{\tau }+\frac{t}{q},\nonumber \\&\quad \Rightarrow tr=\frac{q(r-\tau )}{q-\tau }. \end{aligned}$$
(63)

Note that

$$\begin{aligned} \frac{q(r-\tau )}{q-\tau } \rightarrow r-\tau \quad \text{ as } q \rightarrow p^*=+\infty . \end{aligned}$$
(64)

Since by hypothesis \(H_5\)(ii) we have \(r-\tau <p\) (recall \(N \le p\)), for the previous argument (case \(N \le p\)) to work, we use \(q>r\) big s.t. \(tr<p\) (see (63), (64)). Then again we conclude that (62) holds. Because of (62) we may assume that

$$\begin{aligned} u_n \xrightarrow {w} u \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad u_n \rightarrow u \text{ in } L^p(\varOmega ) \text{ and } \text{ in } L^p(\partial \varOmega ). \end{aligned}$$
(65)

In (51) we choose \(h=u_n-u \in W^{1,p}(\varOmega )\), pass to the limit as \(n \rightarrow +\infty \) and use (65). Then we have

$$\begin{aligned}&\lim _{n \rightarrow +\infty } \langle A(u_n),u_n-u \rangle =0,\\&\quad \Rightarrow u_n \rightarrow u \quad \text{ in } W^{1,p}(\varOmega ) \quad \text{(see } \text{ Proposition }~2),\\&\quad \Rightarrow w_\lambda \text{ satisfies } \text{ the } C\text{-condition. } \end{aligned}$$

This proves the Claim.

Then (47), (48) and the Claim permit the use of the mountain pass theorem (see, for example, Gasiński–Papageorgiou [8] (p. 648)). So, we can find \(u_\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} u_\lambda \in K_{w_\lambda }=\{v \in W^{1,p}(\varOmega ):w'_\lambda (v)=0\} \quad \text{ and } \quad w_\lambda (0)=0<m_\rho ^\lambda \le w_\lambda (u_\lambda ).\nonumber \\ \end{aligned}$$
(66)

From (66) it follows that \(u_\lambda \ne 0\) and \(u_\lambda \in S(\lambda ) \subseteq D_+\) (see Proposition 5). Therefore \({\mathcal {L}}=(-\infty ,{\widehat{\lambda }}_1)\). \(\square \)

In fact as we did in the “sublinear” case, we can produce the minimal positive solution for problem \((P_{\lambda })\), \(\lambda < {\widehat{\lambda }}_1\).

Proposition 17

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_5\) hold and \(\lambda \in {\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\), then problem (\(P_\lambda \)) has a smallest positive solution \({\overline{u}}_\lambda \in D_+\).

Proof

We argue as in the proof of Proposition 10. Recall that \(S(\lambda )\) is downward directed (see Filippakis–Papageorgiou [5]). Using Lemma 3.10 of Hu–Papageorgiou [9] (p. 178), we can find a decreasing sequence \(\{u_n\}_{n \ge 1} \subseteq S(\lambda )\) s.t.

$$\begin{aligned} \inf S(\lambda )= \inf _{n \ge 1} u_n. \end{aligned}$$

We have

$$\begin{aligned}&\langle A(u_n), h\rangle + \int _\varOmega \xi (z)u_n^{p-1}hdz + \int _{\partial \varOmega }\beta (z)u_n^{p-1}hd\sigma = \int _\varOmega [\lambda u_n^{p-1}+f(z,u_n)]hdz\\&\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ), \text{ all } n \in {\mathbb {N}}.\nonumber \end{aligned}$$
(67)

In (67) we choose \(h= u_n \in W^{1,p}(\varOmega )\), we obtain

$$\begin{aligned} \vartheta (u_n)= \lambda \Vert u_n\Vert ^p_p + \int _\varOmega f(z,u_n)u_ndz\quad \text{ for } \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(68)

Recall that

$$\begin{aligned} 0 \le u_n \le u_1 \in D_+ \quad \text{ for } \text{ all } n \in {\mathbb {N}}. \end{aligned}$$
(69)

From (68) to (69) it follows that

$$\begin{aligned} \{u_n\}_{n \ge 1} \subseteq W^{1,p}(\varOmega ) \quad \text{ is } \text{ bounded } \text{(see } \text{ hypotheses } H(\xi ), H(\beta )_1). \end{aligned}$$

So, we may assume that

$$\begin{aligned} u_n \xrightarrow {w} {\overline{u}}_\lambda \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad u_n \rightarrow {\overline{u}}_\lambda \text{ in } L^p(\varOmega ) \text{ and } \text{ in } L^p (\partial \varOmega ). \end{aligned}$$
(70)

In (67) we choose \(h=u_n -{\overline{u}}_\lambda \in W^{1,p}(\varOmega )\), pass to the limit as \(n \rightarrow + \infty \) and use (70). Then

$$\begin{aligned}&\lim _{n \rightarrow +\infty } \langle A(u_n), u_n-{\overline{u}}_\lambda \rangle =0, \nonumber \\&\quad \Rightarrow u_n \rightarrow {\overline{u}}_\lambda \text{ in } W^{1,p}(\varOmega )\quad \text{(see } \text{ Proposition }~2). \end{aligned}$$
(71)

Passing to the limit as \(n \rightarrow + \infty \) in (67) and using (71), we obtain

$$\begin{aligned}&\langle A({\overline{u}}_\lambda ), h\rangle + \int _\varOmega \xi (z){\overline{u}}_\lambda ^{p-1}hdz + \int _{\partial \varOmega }\beta (z){\overline{u}}_\lambda ^{p-1}hd\sigma \\&\quad = \int _\varOmega [\lambda {\overline{u}}_\lambda ^{p-1}+f(z,{\overline{u}}_\lambda )]hdz \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ),\\&\quad \Rightarrow {\overline{u}}_\lambda \text{ is } \text{ a } \text{ nonnegative } \text{ solution } \text{ of } \text{ problem } (P_\lambda ). \end{aligned}$$

If we can show that \({\overline{u}}_\lambda \ne 0\), then \({\overline{u}}_\lambda \in S(\lambda ) \subseteq D_+\). Arguing by contradiction, suppose that \({\overline{u}}_\lambda = 0\). Then

$$\begin{aligned} \Vert u_n\Vert \rightarrow 0 \quad \text{(see } (71)). \end{aligned}$$

We set \(y_n=\dfrac{u_n}{\Vert u_n\Vert }\), \(n \in {\mathbb {N}}\). Then for all \(n \in {\mathbb {N}}\) we have \(\Vert y_n\Vert =1\), \(y_n \ge 0\). So, we may assume that

$$\begin{aligned} y_n \xrightarrow {w} y \text{ in } W^{1,p}(\varOmega ) \quad \text{ and } \quad y_n \rightarrow y \text{ in } L^p(\varOmega ) \text{ and } \text{ in } L^p (\partial \varOmega ). \end{aligned}$$
(72)

From (67) we have

$$\begin{aligned}&\langle A(y_n), h\rangle + \int _\varOmega \xi (z)y_n^{p-1}hdz + \int _{\partial \varOmega }\beta (z)y_n^{p-1}hd\sigma \\&\quad = \int _\varOmega \left[ \lambda y_n^{p-1}+\frac{N_f(u_n)}{\Vert u_n\Vert ^{p-1}}\right] hdz \quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ), \text{ all } n\in {\mathbb {N}}. \nonumber \end{aligned}$$
(73)

Here \(N_f(y)(\cdot )= f(\cdot , y(\cdot ))\) for all \(y \in W^{1,p}(\varOmega )\). We set \(\rho =\Vert u_1\Vert _\infty \). Hypotheses \(H_5\)(i), (iii) imply that

$$\begin{aligned}&0 \le f(z,x) \le c_{23} x^{p-1} \quad \text{ for } \text{ a.a. } z \in \varOmega , \text{ all } x \in [0,\rho ], \text{ some } c_{23} >0,\\&\quad \Rightarrow \left\{ \frac{N_f(u_n)}{\Vert u_n\Vert ^{p-1}}\right\} _{n \ge 1} \subseteq L^p(\varOmega ) \quad \text{ is } \text{ bounded }. \end{aligned}$$

Then by passing to a suitable subsequence if necessary and using hypothesis \(H_5\)(iii), we have

$$\begin{aligned} \frac{N_f(u_n)}{\Vert u_n\Vert ^{p-1}} \xrightarrow {w} 0 \quad \text{ in } L^p(\varOmega ) \end{aligned}$$
(74)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 14).

In (73) we choose \(h = y_n -y \in W^{1,p}(\varOmega )\), pass to the limit as \(n \rightarrow + \infty \) and use (72) and (74). Then

$$\begin{aligned}&\lim _{n \rightarrow +\infty } \langle A(y_n), y_n-y \rangle =0, \nonumber \\&\quad \Rightarrow y_n \rightarrow y \text{ in } W^{1,p}(\varOmega )\quad \text{(see } \text{ Proposition }~2), \ \Vert y\Vert =1, \ y\ge 0. \end{aligned}$$
(75)

So, if in (73) we pass to the limit as \(n \rightarrow + \infty \) and use (74) and (75), then

$$\begin{aligned}&\langle A(y), h\rangle + \int _\varOmega \xi (z)y^{p-1}hdz + \int _{\partial \varOmega }\beta (z)y^{p-1}hd\sigma =\lambda \int _\varOmega y^{p-1}hdz\\&\quad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ). \end{aligned}$$

Choosing \(h=y \in W^{1,p}(\varOmega )\), we obtain

$$\begin{aligned} \vartheta (y)= \lambda \Vert y\Vert ^p_p< {\widehat{\lambda }}_1 \Vert y\Vert ^p_p\quad \text{(see } (75) \text{ and } \text{ recall } \lambda < {\widehat{\lambda }}_1), \end{aligned}$$

a contradiction to Proposition 1. Therefore

$$\begin{aligned}&{\overline{u}}_\lambda \ne 0,\\&\quad \Rightarrow {\overline{u}}_\lambda \in S(\lambda ) \quad \text{ and } \quad {\overline{u}}_\lambda = \inf S(\lambda ). \end{aligned}$$

\(\square \)

As in the “sublinear” case, we have:

Proposition 18

If hypotheses \(H(\xi )\), \(H(\beta )_1\), \(H_5\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is nondecreasing and left continuous.

Again by strengthening the conditions on the functions \(\beta (\cdot )\) and \(f(z, \cdot )\) we can improve the monotonicity of the map \(\lambda \rightarrow {\overline{u}}_\lambda \).

The new hypotheses on the perturbation f(zx) are the following:

\(H_6\): \(f : \varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function s.t. for a.a. \(z \in \varOmega \), \(f(z,0)=0\), \(f(z,x) \ge 0\) for all \(x > 0\), there exists \(\varOmega _0 \subseteq \varOmega \) with \(f(z,x)>0\) for all \(z \in \varOmega _0\), all \(x>0\), hypotheses \(H_6\)(i), (ii), (iii) are the same as the corresponding hypotheses \(H_5\)(i), (ii), (iii) and

  1. (iv)

    for every \(\rho >0\), there exists \({\widehat{\xi }}_\rho >0\) s.t. for a.a. \(z \in \varOmega \), the function

    $$\begin{aligned} x \rightarrow f(z,x)+ {\widehat{\xi }}_\rho x^{p-1} \end{aligned}$$

    is nondecreasing on \([0,\rho ]\).

Proposition 19

If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_6\) hold, then the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is strictly decreasing.

In fact under these stronger conditions on \(\beta (z)\) and f(zx), we can produce a second positive solution for problem \((P_{\lambda })\), when \(\lambda \in {\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\).

Proposition 20

If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_6\) hold and \(\lambda \in {\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\), then problem (\(P_\lambda \)) admits at least two positive solutions

$$\begin{aligned} u_\lambda , {\widehat{u}}_\lambda \in D_+, \quad u_\lambda \le {\widehat{u}}_\lambda , \quad u_\lambda \ne {\widehat{u}}_\lambda . \end{aligned}$$

Proof

From Proposition 16 we already have a positive solution \(u_\lambda \in D_+\). We may assume that \(u_\lambda \) is the minimal positive solution, that is, \(u_\lambda = {\overline{u}}_\lambda \) (see Proposition 17). We introduce the following Carathéodory function

$$\begin{aligned} \zeta _\lambda (z,x)={\left\{ \begin{array}{ll}(\lambda +\eta )u_\lambda (z)^{p-1}+f(z,u_\lambda (z)) &{}\quad \text{ if } x \le u_\lambda (z),\\ (\lambda +\eta ) x^{p-1}+f(z,x) &{}\quad \text{ if } u_\lambda (z) <x,\end{array}\right. } \end{aligned}$$
(76)

with \(\eta > \Vert \xi \Vert _\infty \) as always. We set \(Z_\lambda (z,x)= \int _0^x \zeta _\lambda (z,s)ds\) and consider the \(C^1\)-functional \(j_\lambda : W^{1,p}(\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} j_\lambda (u)=\frac{1}{p}\vartheta (u) +\frac{\eta }{p}\Vert u\Vert ^p_p- \int _\varOmega Z_\lambda (z,u)dz, \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

From (76) it is clear that

$$\begin{aligned} j_\lambda = w_\lambda +\xi _\lambda ^*\quad \text{ with } \xi _\lambda ^*\in {\mathbb {R}} \end{aligned}$$
(77)

with \(w_\lambda \in C^1(W^{1,p}(\varOmega ))\) as in the proof of Proposition 16. From (77) and the Claim in the proof of Proposition 16, it follows that

$$\begin{aligned} j_\lambda \text{ satisfies } \text{ the } C\text{-condition }. \end{aligned}$$
(78)

Claim: We may assume that \(u_\lambda \in D_+\) is a local minimizer of \(j_\lambda \).

Let \(\lambda<\mu <{\widehat{\lambda }}_1\) and let \(u_\mu \in S(\mu ) \subseteq D_+\) (see Proposition 16). We consider the following truncation of \(\zeta _\lambda (z, \cdot )\)

$$\begin{aligned} {\widehat{\zeta }}_\lambda (z,x)={\left\{ \begin{array}{ll}\zeta (z,x) &{}\quad \text{ if } x \le u_\mu (z),\\ \zeta (z,u_\mu (z)) &{} \quad \text{ if } u_\mu (z) <x.\end{array}\right. } \end{aligned}$$
(79)

Evidently this is a Carathéodory function. We set \({\widehat{Z}}_\lambda (z,x)= \int _0^x {\widehat{\zeta }}_\lambda (z,s)ds\) and consider the \(C^1\)-functional \({\widehat{j}}_\lambda : W^{1,p} (\varOmega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} {\widehat{j}}_\lambda (u)=\frac{1}{p}\vartheta (u) +\frac{\eta }{p}\Vert u\Vert ^p_p- \int _\varOmega {\widehat{Z}}_\lambda (z,u)dz \quad \text{ for } \text{ all } u \in W^{1,p}(\varOmega ). \end{aligned}$$

If \(K_{{\widehat{j}}_\lambda }= \{u \in W^{1,p}(\varOmega ): {\widehat{j}}_\lambda ^\prime (u)=0\}\), then we will show that

$$\begin{aligned} K_{{\widehat{j}}_\lambda } \subseteq [u_\lambda , u_\mu ]= \{u \in W^{1,p}(\varOmega ): u_\lambda (z) \le u(z) \le u_\mu (z) \ \text{ for } \text{ a.a. } z \in \varOmega \}. \end{aligned}$$

So, let \( u \in K_{{\widehat{j}}_\lambda }\). Then

$$\begin{aligned}&{\widehat{j}}_\lambda ^\prime (u)=0 \nonumber \\&\quad \Rightarrow \langle A(u), h\rangle + \int _\varOmega (\xi (z)+\eta )|u|^{p-2}uhdz + \int _{\partial \varOmega }\beta (z)|u|^{p-2}uhd\sigma = \int _\varOmega {\widehat{\zeta }}_\lambda (z,u)hdz\\&\qquad \text{ for } \text{ all } h \in W^{1,p}(\varOmega ).\nonumber \end{aligned}$$
(80)

In (80) we choose \(h=(u_\lambda -u)^+ \in W^{1,p}(\varOmega )\). Then

$$\begin{aligned}&\langle A(u), (u_\lambda -u)^+\rangle + \int _\varOmega (\xi (z)+\eta )|u|^{p-2}u(u_\lambda -u)^+dz + \int _{\partial \varOmega }\beta (z)|u|^{p-2}u(u_\lambda -u)^+d\sigma \\&\quad = \int _\varOmega [(\lambda +\eta )u_\lambda ^{p-1}+f(z,u_\lambda )](u_\lambda -u)^+dz \quad \text{(see } (76) \text{ and } (79))\\&\quad = \langle A(u_\lambda ), (u_\lambda -u)^+\rangle + \int _\varOmega (\xi (z)+\eta )u_\lambda ^{p-1}(u_\lambda -u)^+dz \\&\qquad + \int _{\partial \varOmega }\beta (z)u_\lambda ^{p-1}(u_\lambda -u)^+d\sigma \quad \text{(since } u_\lambda \in S(\lambda )),\\&\quad \Rightarrow \langle A(u_\lambda )-A(u), (u_\lambda -u)^+\rangle + \int _\varOmega (\xi (z)+\eta )(u_\lambda ^{p-1}-|u|^{p-2}u)(u_\lambda -u)^+dz\\&\qquad + \int _{\partial \varOmega }\beta (z)(u_\lambda ^{p-1}-|u|^{p-2}u)(u_\lambda -u)^+d\sigma =0,\\&\quad \Rightarrow u_\lambda \le u \quad \text{(recall } \text{ that } \eta > \Vert \xi \Vert _\infty \text{ and } \text{ see } \text{ hypothesis } H(\beta )). \end{aligned}$$

Also in (80), we choose \(h=(u-u_\mu )^+ \in W^{1,p}(\varOmega )\). Then

$$\begin{aligned}&\langle A(u), (u-u_\mu )^+\rangle + \int _\varOmega (\xi (z)+\eta )u^{p-1}(u-u_\mu )^+dz + \int _{\partial \varOmega }\beta (z)u^{p-1}(u-u_\mu )^+d\sigma \\&\quad = \int _\varOmega [(\lambda +\eta )u_\mu ^{p-1}+f(z,u_\mu )](u-u_\mu )^+dz \quad \text{(see } (76), (79))\\&\quad \le \int _\varOmega [(\mu +\eta )u_\mu ^{p-1}+f(z,u_\mu )](u-u_\mu )^+dz \quad \text{(since } \lambda <\mu )\\&\quad = \langle A(u_\mu ), (u -u_\mu )^+\rangle + \int _\varOmega (\xi (z)+\eta )u_\mu ^{p-1}(u-u_\mu )^+dz + \int _{\partial \varOmega }\beta (z)u_\mu ^{p-1}(u-u_\mu )^+d\sigma \\&\qquad \text{(since } u_\mu \in S(\mu )),\\&\quad \Rightarrow \langle A(u)-A(u_\mu ), (u-u_\mu )^+\rangle + \int _\varOmega (\xi (z)+\eta )(u^{p-1}-u_\mu ^{p-1})(u-u_\mu )^+dz\\&\qquad + \int _{\partial \varOmega }\beta (z)(u^{p-1}-u_\mu ^{p-1})(u-u_\mu )^+d\sigma \le 0,\\&\quad \Rightarrow u \le u_\mu . \end{aligned}$$

So, we have proved that

$$\begin{aligned}&u \in [u_\lambda ,u_\mu ],\nonumber \\&\quad \Rightarrow K_{{\widehat{j}}_\lambda } \subseteq [u_\lambda ,u_\mu ]. \end{aligned}$$
(81)

Since \(\eta > \Vert \xi \Vert _\infty \), from (76) and (79) it follows that \({\widehat{j}}_\lambda \) is coercive. Also, the Sobolev embedding theorem and the compactness of the trace map imply that \({\widehat{j}}_\lambda \) is sequentially weakly lower semicontinuous. So, from the Weierstrass-Tonelli theorem, we can find \({\widetilde{u}}_\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned}&{\widehat{j}}_\lambda ({\widetilde{u}}_\lambda ) = \inf \left[ {\widehat{j}}_\lambda (u) : u\in W^{1,p}(\varOmega ) \right] , \nonumber \\&\quad \Rightarrow {\widetilde{u}}_\lambda \in K_{{\widehat{j}}_\lambda } \subseteq [u_\lambda ,u_\mu ]\quad \text{(see } (81)). \end{aligned}$$
(82)

If \({\widetilde{u}}_\lambda \ne u_\lambda \), then from (76), (79) and (82), we see that

$$\begin{aligned} {\widetilde{u}}_\lambda \in S(\lambda ) \subseteq D_+, \quad u_\lambda \le {\widetilde{u}}_\lambda , \quad {\widetilde{u}}_\lambda \ne u_\lambda . \end{aligned}$$

So, this is the desired second solution of \((P_{\lambda })\) and we are done.

Therefore, we assume that \({\widetilde{u}}_\lambda = u_\lambda \). From Proposition 19, we have

$$\begin{aligned} u_\mu -u_\lambda \in {\mathrm{int }}\, {\widehat{C}}_+ \quad \text{(recall } \text{ that } u_\lambda = {\overline{u}}_\lambda ). \end{aligned}$$
(83)

From (76) and (79) it is clear that

$$\begin{aligned} {\widehat{j}}_\lambda \big |_{[0,u_\mu ]} = j_\lambda \big |_{[0,u_\mu ]}. \end{aligned}$$

From this equality and (83) we infer that

$$\begin{aligned}&u_\lambda \text{ is } \text{ a } \text{ local } C^1({\overline{\varOmega }})\text{-minimizer } \text{ of } j_\lambda ,\\&\quad \Rightarrow u_\lambda \text{ is } \text{ a } \text{ local } W^{1,p}(\varOmega )\text{-minimizer } \text{ of } j_\lambda \quad \text{(see } \text{ Proposition }~3). \end{aligned}$$

This proves the Claim.

In proving (81), we established that

$$\begin{aligned} K_{j_\lambda } \subseteq [u_\lambda ) = \{ u \in W^{1,p}(\varOmega ) : u_\lambda (z) \le u(z) \text{ for } \text{ a.a. } z \in \varOmega \}. \end{aligned}$$
(84)

We assume that \(K_{j_\lambda }\) is finite or otherwise (84) implies that we already have a whole sequence of distinct positive solutions of \((P_{\lambda })\), all bigger that \(u_\lambda \), hence we are done. Then we can find \(\rho \in (0,1)\) small s.t.

$$\begin{aligned} j_\lambda (u_\lambda ) < \inf \left[ j_\lambda (u) : \Vert u-u_\lambda \Vert = \rho \right] =m^\lambda _\rho \end{aligned}$$
(85)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 29). Note that hypothesis \(H_6\)(ii) and (76) imply that

$$\begin{aligned} j_\lambda (t {\widehat{u}}_1) \rightarrow - \infty \quad \text{ as } t \rightarrow + \infty . \end{aligned}$$
(86)

From (78), (85) and (86) we see that we can apply the mountain pass theorem and find \({\widehat{u}}_\lambda \in W^{1,p}(\varOmega )\) s.t.

$$\begin{aligned} {\widehat{u}}_\lambda \in K_{j_\lambda }\quad \text{ and } \quad m^\lambda _\rho \le j_\lambda ({\widehat{u}}_\lambda ). \end{aligned}$$
(87)

From (76), (84), (85) and (87), we infer that

$$\begin{aligned} {\widehat{u}}_\lambda \in S(\lambda ) \subseteq D_+, \quad u_\lambda \le {\widehat{u}}_\lambda , \quad {\widehat{u}}_\lambda \ne u_\lambda .\nonumber \\ \end{aligned}$$

\(\square \)

So, summarizing the situation for problem \((P_{\lambda })\) when the perturbation \(f(z, \cdot )\) is \((p-1)\)-superlinear, we have the following theorem

Theorem 2

If hypotheses \(H(\xi )\), \(H(\beta )_2\), \(H_6\) hold, then

  1. (a)

    for all \(\lambda \ge {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has no positive solution;

  2. (b)

    for all \(\lambda < {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has at least two positive solutions

    $$\begin{aligned} u_\lambda , {\widehat{u}}_\lambda \in D_+, \quad u_\lambda \le {\widehat{u}}_\lambda , \quad {\widehat{u}}_\lambda \ne u_\lambda ; \end{aligned}$$
  3. (c)

    for all \(\lambda < {\widehat{\lambda }}_1\) problem \((P_{\lambda })\) has a smallest positive solution \({\overline{u}}_\lambda \in D_+\) and the map \(\lambda \rightarrow {\overline{u}}_\lambda \) from \({\mathcal {L}}=(-\infty , {\widehat{\lambda }}_1)\) into \(C^1({\overline{\varOmega }})\) is strictly increasing and left continuous.