Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Photonic Sensors
  3. Article

Review of surface plasmon resonance and localized surface plasmon resonance sensor

  • Review
  • Open access
  • Published: 03 January 2012
  • Volume 2, pages 37–49, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Photonic Sensors Aims and scope Submit manuscript
Review of surface plasmon resonance and localized surface plasmon resonance sensor
Download PDF
  • Yong Chen1 &
  • Hai Ming1 
  • 22k Accesses

  • 234 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are also discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Theoretical Implications for Surface Plasmon Resonance Based on Microstructured Optical Fiber

Chapter © 2020

Microstructured Optical Fiber-Based Plasmonic Sensors

Chapter © 2019

Sensing enhancement of nanostructure surface plasmon resonance in optical fiber ring resonator

Article 18 November 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Surface plasmon resonance
  • Surface-Enhanced Raman Spectroscopy
  • Nanosensors
  • Optical Sensor
  • Nanophotonics and Plasmonics
  • Sensors and biosensors
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, no. 2, pp. 299–304, 1983.

    Article  Google Scholar 

  2. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 12, no. 3, pp. 213–220, 1993.

    Article  Google Scholar 

  3. A. Huber, S. Demartis, and D. Neri, “The use of biosensor technology for the engineering of antibodies and enzymes,” Journal of Molecular Recognition, vol. 12, no. 3, pp. 198–216, 1999.

    Article  Google Scholar 

  4. M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sensors and Actuators A: Physical, vol. 51, no. 2–3, pp. 211–217, 1995.

    Article  Google Scholar 

  5. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158–177, 2007.

    Article  Google Scholar 

  6. S. A. Maier, Plasmonics: Fundamentals and Applications. New York: Springer-Verlag, 2007, pp. 21–34.

    Google Scholar 

  7. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Applied Optics, vol. 27, no. 6, pp. 1160–1163, 1988.

    Article  Google Scholar 

  8. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 216, no. 4, pp. 398–410, 1968.

    Google Scholar 

  9. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, vol. 29, no. 1–3, pp. 261–267, 1995.

    Article  Google Scholar 

  10. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., vol. 21, no. 22, pp. 1530–1533, 1968.

    Article  Google Scholar 

  11. D. J. Webb, “Research activities arising from the University of Kent,” Photonic Sensors, vol. 1, no. 2, pp. 140–151, 2011.

    Article  Google Scholar 

  12. C. Y. Chen and E. Burstein, “Giant Raman scattering by molecules at metal-island films,” Phys. Rev. Lett., vol. 45, no. 15, pp. 1287–1291, 1980.

    Article  Google Scholar 

  13. K. Sokolov, G. Chumanov, and T. M. Cotton “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem., vol. 70, no. 18, pp. 3898–3905, 1998.

    Article  Google Scholar 

  14. J. Zeng, D. Liang, and Z. X. Cao, “Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids,” in Proc. SPIE, vol. 5855, pp. 667–670, 2005.

    Article  Google Scholar 

  15. R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” Journal of Immunological Methods, vol. 200, no. 1–3, pp. 121–133, 1998.

    Google Scholar 

  16. K. Q. Lin, Y. H. Lu, J. X. Chen, R. S. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Optics Express, vol. 16, no. 23, pp. 18599–18604, 2008.

    Article  Google Scholar 

  17. X. L. Wang, P. Wang, C. C. Chen, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” Journal of Applied Physics, vol. 107, no. 12, pp. 124517-1–124517-4, 2010.

    Google Scholar 

  18. D. B. Cai, Y. H. Lu, K. Q. Lin, P. Wang, and H. Ming, “Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM),” Optics Express, vol. 16, no. 19, pp. 14597–14602, 2008.

    Article  Google Scholar 

  19. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano. Lett., vol. 5, no. 10, pp. 2034–2038, 2005.

    Article  Google Scholar 

  20. K. Q. Lin, Y. H. Lu, Z. F. Luo, R. S. Zheng, P. Wang, and H. Ming, “Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor,” Chinese Optics Letter, vol. 7, no. 5, pp. 428–431, 2009.

    Article  Google Scholar 

  21. Y. Chen, R. S. Zheng, D. G. Zhang, Y. H. Lu, P. Wang, H. Ming, Z. F. Luo, and Q. Kan, “Bimetallic chip for a surface plasmon resonance sensing instrument,” Applied Optics, vol. 50, no. 3, pp. 387–391, 2011.

    Article  Google Scholar 

  22. Y. Chen, R. S. Zheng, Y. H. Lu, P. Wang, and H. Ming, “Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating,” Chinese Optics Letter, vol. 9, no. 10, pp. 100605–100608, 2011.

    Article  Google Scholar 

  23. J. Yan, Y. H. Lu, P. Wang, C. Gu, R. S. Zheng, Y. Chen, H. Ming, and Q. W. Zhan, “Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam excitation,” Chinese Optics Letter, vol. 7, no. 10, pp. 909–911, 2009.

    Article  Google Scholar 

  24. K. Q. Lin, L. M. Wei, D. G. Zhang, R. S. Zheng, P. Wang, Y. H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chinese Physics Letters, vol. 24, no. 11, pp. 3081–3084, 2007.

    Article  Google Scholar 

  25. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors, vol. 2, no. 2, pp. 62–70, 2002.

    Article  Google Scholar 

  26. X. C. Yuan, B. H. Ong, Y. G. Tan, R. Irawan, and S. C. Tjin, “Sensitivity stability optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A: Pure Appl. Opt., vol. 8, no. 11, pp. 959–963, 2006.

    Article  Google Scholar 

  27. Y. Y. Tan, X. C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Applied Physics Letter, vol. 91, no. 14, pp. 141108-1–141108-3, 2007.

    Article  Google Scholar 

  28. S. Wang, H. Y. Zhang, L. Wang, Z. J. Duan, and I. Kennedy, “Analysis of sulphonamide residues in edible animal products: a review,” Food Additives and Contaminants, vol. 23, no. 4, pp. 362–384, 2006.

    Article  Google Scholar 

  29. H. M. Zhou, H. C. OU, H. Jiang, H. F. Jiang, X. P. Wang, and Z. F. Luo, “Surface plasmon resonance for rapid determination of sulfamethoxazole in milk,” Food Science, vol. 31, no. 6, pp. 168–171, 2010.

    Google Scholar 

  30. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sensors Journal, vol. 7, no. 8, pp. 1118–1129, 2007.

    Article  Google Scholar 

  31. W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors, vol. 1, no. 3, pp. 268–280, 2011.

    Article  Google Scholar 

  32. Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun., vol. 282, no. 3, pp. 439–442, 2009.

    Article  Google Scholar 

  33. Z. G. Xie, Y. H. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Applied Physics B, vol. 95, no. 4, pp. 751–755, 2009.

    Article  Google Scholar 

  34. Z. G. Xie, P. Wang, Y. H. Lu, K. Q. Lin, J. Yan, and H. Ming, “Photonic crystal fiber SERS sensors based on silver nanoparticle colloid,” Chinese Physics Letters, vol. 25, no. 12, pp. 4473–4475, 2008.

    Article  Google Scholar 

  35. X. L. Wen, M. F. Yi, D. G. Zhang, P. Wang, Y. H. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology, vol. 22, no. 8, pp. 085203, 2011.

    Article  Google Scholar 

  36. M. F. Yi, D. G. Zhang, P. Wang, X. J. Jiao, S. Blair, X. L. Wen, Q. Fu, Y. H. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics, vol. 6, no. 3, pp. 515–519, 2011.

    Article  Google Scholar 

  37. M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics, vol. 6, no. 12, pp. 213–217, 2011.

    Article  Google Scholar 

  38. T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short au nanorods in aqueous solution,” Langmuir, vol. 20, no. 15, pp. 6414–6420, 2004.

    Article  Google Scholar 

  39. F. Jimenez, J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, O. Ziemann, and C. A. Bunge, “Analysis ofa plastic optical fiber-based displacement sensor,” Applied Optics, vol. 46, no. 25, pp. 6256–6262, 2007.

    Article  Google Scholar 

  40. C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fibers,” Microwave and Optical Technology Letters, vol. 43, no. 5, pp. 387–390, 2004.

    Article  Google Scholar 

  41. F. Baldini, P. Bechi, S. Bracci, F. Cosi, and F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sensors and Actuators B: Chemical, vol 29, no. 1–3, pp. 164–168, 1995.

    Article  Google Scholar 

  42. D. F. Merchant, P. J. Scully, and N. F. Schmitt, “Chemical tapering of polymer optical fiber,” Sensors and Actuators A: Physical, vol 76, no. 1–3, pp. 365–371, 1999.

    Article  Google Scholar 

  43. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Applied Spectroscopy, vol. 54, no. 4, pp. 522–527, 2000.

    Article  Google Scholar 

  44. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett., vol. 487, no. 4–6, pp. 153–164, 2010.

    Article  Google Scholar 

  45. H. J. Chen, Z. H. Sun, W. H. Ni, K. C. Woo, H. Q. Lin, L. D. Sun, C. H. Yan, and J. F. Wang, “Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes,” Small, vol. 5, no. 18, pp. 2111–2119, 2009.

    Article  Google Scholar 

  46. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, no. 5216, pp. 1466–1468, 1995.

    Article  Google Scholar 

  47. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protocols, vol. 2, no. 9, pp. 2182–2190, 2007.

    Article  Google Scholar 

  48. A. R. Siekkinen, J. M. McLellan, J. Chen, and Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett., vol. 432, no. 4–6, pp. 491–496, 2006.

    Article  Google Scholar 

  49. R. P. Van Duyne, J. C. Hulteen, and D. A Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys., vol. 99, no. 3, pp. 2101–2115, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Optics & Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China

    Yong Chen & Hai Ming

Authors
  1. Yong Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Hai Ming
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Hai Ming.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Chen, Y., Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens 2, 37–49 (2012). https://doi.org/10.1007/s13320-011-0051-2

Download citation

  • Received: 18 September 2011

  • Revised: 28 October 2011

  • Published: 03 January 2012

  • Issue Date: March 2012

  • DOI: https://doi.org/10.1007/s13320-011-0051-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Surface plasmons resonance
  • localized surface plasmon resonance
  • sensor
  • electromagnetic-field enhancement
  • high sensitivity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature