Skip to main content
Log in

Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Oral bioavailability (F) is one of the key factors that need to be determined in drug discovery. This factor is determined by the permeability and solubility of new molecule entities (NMEs) according to the biopharmaceutics classification system (BCS).

Methods

In the present study, we evaluated the permeability of 22 drugs in rat intestinal tissues using an Ussing chamber system and correlated the permeability with data on human intestinal absorption (Fa) and intestinal availability (Fa × Fg) reported in the literature.

Results

The rat intestinal permeability data were better correlated with the combined effect of the absorbed fraction (Fa) and the fraction escaping intestinal metabolism (Fg) than Fa itself. Clear regional dependent absorption was observed for most of the test drugs, and ileal Papp was generally higher than that in other segments. Finally, the function of the efflux transporter P-glycoprotein (P-gp) with regard to oral absorption of substrates was evaluated with an Ussing chamber. We also demonstrated that the rat intestinal stability of the three cytochrome P450 (CYP) substrates was consistent with the human data.

Conclusion

An Ussing chamber system incorporating rat intestinal tissue would be a valuable tool to predict human intestinal absorption and metabolism for molecules with various physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  2. Hellriegel ET, Bjornsson TD, Hauck WW, et al. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther. 1996;60:601–7.

    Article  CAS  PubMed  Google Scholar 

  3. Van De Waterbeemd H, Smith DA, Beaumont K, et al. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem. 2001;44:1313–33.

    Article  CAS  Google Scholar 

  4. Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  5. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. FDA Guidance for industry: Waiver of in vivo bioavailability and bioequivalence studies for immediate release dosage forms based on a biopharmaceutical classification system. 2000. https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/biopharmaceutics-classification-system-bcs-guidance. Accessed 15 Nov 2021.

  7. Kansy M, Senner F, Gubernator K, et al. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–10.

    Article  CAS  PubMed  Google Scholar 

  8. Hidalgo IJ. Assessing the absorption of new pharmaceuticals. Curr Top Med Chem. 2001;1:385–401.

    Article  CAS  PubMed  Google Scholar 

  9. Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst. 1997;14:221–86.

    Article  CAS  PubMed  Google Scholar 

  10. Sun D, Lennernas H, Welage LS, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19:1400–16.

    Article  CAS  PubMed  Google Scholar 

  11. Oswald S, Gröer C, Drozdzik M, et al. Mass spectrometry-based targeted proteomics as a tool to elucidate the expression and function of intestinal drug transporters. AAPS J. 2013;15:1128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43.

    Article  CAS  PubMed  Google Scholar 

  13. Lenneraes H, Palm K, Fagerholm U, et al. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int J Pharm. 1996;127:103–7.

    Article  Google Scholar 

  14. Jezyk N, Li C, Stewart BH, et al. Transport of pregabalin in rat intestine and Caco-2 monolayers. Pharm Res. 1999;16:519–26.

    Article  CAS  PubMed  Google Scholar 

  15. Shah P, Jogani V, Bagchi T, et al. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnol Prog. 2006;22:186–98.

    Article  CAS  PubMed  Google Scholar 

  16. Hayeshi R, Hilgendorf C, Artursson P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35:383–96.

    Article  CAS  PubMed  Google Scholar 

  17. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951;23:110–27.

    Article  CAS  PubMed  Google Scholar 

  18. Rozehnal V, Nakai D, Hoepner U, et al. Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. Eur J Pharm Sci. 2012;46:367–73.

    Article  CAS  PubMed  Google Scholar 

  19. Satoshi K, Masateru M. Simultaneous prediction of intestinal absorption and metabolism using the mini-Ussing chamber system. J Pharm Sci. 2019;108:763–9.

    Article  CAS  Google Scholar 

  20. Masateru M, Satoshi K, Toshihisa K, et al. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs. Eur J Pharm Biopharm. 2018;122:49–53.

    Article  CAS  Google Scholar 

  21. Haslam IS, O’Reilly DA, Sherlock DJ, et al. Pancreatoduodenectomy as a source of human small intestine for Ussing chamber investigations and comparative studies with rat tissue. Biopharm Drug Dispos. 2011;32:210–21.

    Article  CAS  PubMed  Google Scholar 

  22. Dahan A, Lennernas H, Amidon GL. The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm. 2012;9:1847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao X, Gibbs ST, Fang L, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23:1675–86.

    Article  CAS  PubMed  Google Scholar 

  24. Lennernäs H. Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007;59:1103–20.

    Article  PubMed  CAS  Google Scholar 

  25. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6:19–28.

    Article  CAS  PubMed  Google Scholar 

  26. Sjögren E, Eriksson J. Excised segments of rat small intestine in Ussing chamber studies: a comparison of native and stripped tissue viability and permeability to drugs. Int J Pharm. 2016;505:361–8.

    Article  PubMed  CAS  Google Scholar 

  27. Calvo PC, Campo O, Guerra C, et al. Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue. Sens Bio-Sens Res. 2020;29: 100357.

    Article  Google Scholar 

  28. Benjamin W, Danny R, et al. Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. Int J Pharmaceut. 2015;478:736–44.

    Article  CAS  Google Scholar 

  29. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Kattan AF, Varma MV, Steyn SJ, et al. Projecting ADME behavior and drug–drug interactions in early discovery and development: application of the extended clearance classification system. Pharm Res. 2016;33:3021–30.

    Article  CAS  PubMed  Google Scholar 

  31. Miyake M, Toguchi H, Nishibayashi T, et al. Establishment of novel prediction system of intestinal absorption in humans using human intestinal tissues. J Pharm Sci. 2013;102:2564–71.

    Article  CAS  PubMed  Google Scholar 

  32. Fairstein M, Swissa R, Dahan A. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine. AAPS J. 2013;15:589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolk O, Markovic M, Porat D, et al. Segmental-dependent intestinal drug permeability: development and model validation of in silico predictions guided by in vivo permeability values. J Pharm Sci. 2019;108:316–25.

    Article  CAS  PubMed  Google Scholar 

  34. Dahan A, Lennern SH, Amidon GL. The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm. 2012;9(6):1847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dahan A, Miller JM, Hilfinger JM, et al. High permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm. 2010;5:1827–34.

    Article  CAS  Google Scholar 

  36. He YL, Murby S, Warhurst G, et al. Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly (ethylene glycol) and D-peptides. J Pharm Sci. 1998;87:626–33.

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Zhou HY, Guan C, et al. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2): e00575.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ponce YM, Pérez MAC, Zaldivar VR, et al. Prediction of intestinal epithelial transport of drug in (Caco-2) cell culture from molecular structure using in silico approaches during early drug discovery. Int Electron J Mol Design. 2005;4:124–50.

    CAS  Google Scholar 

  39. Furubayashi T, Inoue D, Nishiyama N, et al. Comparison of various cell lines and three-dimensional mucociliary tissue model systems to estimate drug permeability using an in vitro transport study to predict nasal drug absorption in rats. Pharmaceutics. 2020;12(1):79.

    Article  CAS  PubMed Central  Google Scholar 

  40. Prachi S, Milind B, Diptee E, et al. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci. 2019;132:72–85.

    Article  CAS  Google Scholar 

  41. Sevin E, Dehouck L, Costa FD, et al. Accelerated Caco-2 cell permeability model for drug discovery. J Pharmacol Tox Met. 2013;68(3):334–9.

    Article  CAS  Google Scholar 

  42. Lee, Jong, Bong J. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur J Pharm Biopharm. 2017;114:38–42.

    Article  CAS  PubMed  Google Scholar 

  43. Hai PT, Garrigues T, Bermejo M, et al. Provisional classification and in silico study of biopharmaceutical system based on Caco-2 cell permeability and dose number. Mol Pharmaceut. 2013;10(6):2445–61.

    Article  CAS  Google Scholar 

  44. Dahan, Arik, Amidon, et al. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastr L. 2009;60(2):371–7.

    Article  CAS  Google Scholar 

  45. Zheng Y, Chen X, Benet LZ. Reliability of in vitro and in vivo methods for predicting the effect of p-glycoprotein on the delivery of antidepressants to the brain. Clin Pharmacokinet. 2016;55(2):143–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith M, Crofoot K, Rodriguez-Proteau R, et al. Effects of phenytoin and carbamazepine on calcium transport in Caco-2 cells. Toxicol In Vitro. 2007;21(5):855–62.

    Article  CAS  Google Scholar 

  47. Thwaites DT, Cavet M, Hirst BH, et al. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. Brit J Pharmacol. 1995;114(5):981–6.

    Article  CAS  Google Scholar 

  48. Mathews JM, Dostal LA, Bend JR. Inactivation of rabbit pulmonary cytochrome P-450 in microsomes and isolated perfused lungs by the suicide substrate 1-aminobenzotriazole. J Pharmacol Exp Ther. 1985;235:186–90.

    CAS  PubMed  Google Scholar 

  49. Mugford CA, Mortillo M, Mico BA. 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague-Dawley rats. Fundam Appl Toxicol. 1992;19:43–9.

    Article  CAS  PubMed  Google Scholar 

  50. Van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol. 2005;1:175–85.

    Article  PubMed  Google Scholar 

  51. Mendes Å, Lutz M, Tannergren C, et al. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci. 2013;48:166–80.

    Article  CAS  Google Scholar 

  52. Miyake M, Koga T, Kondo S, et al. Prediction of drug intestinal absorption in human using the Ussing chamber system: a comparison of intestinal tissues from animals and humans. Eur J Pharm Sci. 2017;96:373–80.

    Article  CAS  PubMed  Google Scholar 

  53. Routledge PA, Shand DG. Clinical pharmacokinetics of propranolol. Clin Pharmacokinet. 1979;4:73–90.

    Article  CAS  PubMed  Google Scholar 

  54. Masaoka Y, Tanaka Y, Kataoka M, et al. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.

    Article  CAS  PubMed  Google Scholar 

  55. Manto CC, Sara M, Laleh A. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s rule of five. Int J Pharm. 2018;549:133–49.

    Article  CAS  Google Scholar 

  56. Kharasch ED, Hoffer C, Whittington D. The effect of quinidine, used as a probe for the involvement of P-glycoprotein, on the intestinal absorption and pharmacodynamics of methadone. Br J Clin Pharmacol. 2004;57:600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nguyen TV, Smith DE, Fleisher D. PEPT1 enhances the uptake of gabapentin via trans-stimulation of b0,+ exchange. Pharm Res. 2007;24(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  58. Wuensch T, Schulz S, Ullrich S, et al. The peptide transporter pept1 is expressed in distal colon in rodents and humans and contributes to water absorption. Am J Physiol Gastrointest Liver Physiol. 2013;305:66–73.

    Article  CAS  Google Scholar 

  59. Westphal K, Weinbrenner A, Giessmann T, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68:6–12.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. The species differences of intestinal drug absorption and first-pass metabolism between cynomolgus monkeys and humans. J Pharm Sci. 2009;98(11):4343–53.

    Article  CAS  PubMed  Google Scholar 

  61. Komura H, Iwaki M. Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci. 2008;97:1775–800.

    Article  CAS  PubMed  Google Scholar 

  62. Nishimuta H, Sato K, Mizuki Y, et al. Species differences in intestinal metabolic activities of cytochrome P450 isoforms between cynomolgus monkeys and humans. Drug Metab Pharmacokinet. 2011;26(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  63. Arnold, Yvonne E, Thorens, et al. Drug transport across porcine intestine using an Ussing chamber system: regional differences and the effect of P-glycoprotein and CYP3A4 activity on drug absorption. Pharmaceutics. 2019;11:139–62.

    Article  CAS  PubMed Central  Google Scholar 

  64. Yvonne EA, Yogeshvar NK. Using ex vivo porcine jejunum to identify membrane transporter substrates: a screening tool for early-stage drug development. Biomedicines. 2020;8(9):319–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Funding

The trials were supported by (DMPK) Department, Pharmaron, Beijing, China.

Conflict of Interest

Authors have no conflicts of interest to declare.

Ethics Approval

All studies were approved by Pharmaron’s Institutional Animal Care and Use Committee (IACUC). All procedures and the care of the rats were in accordance with the National Guidelines for Experimental Animal Welfare (MOST, China, 2006) at the Center for Animal Experiments, which has full accreditation from the Association for Assessment and Accreditation of Laboratory Animal Care International. Maximum effort was exerted to minimize animal suffering and the number of animals necessary for the attainment of reliable data.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability Statement

Data supporting the findings are available from the corresponding author upon request.

Code Availability

The proprietary software program GraphPad was used for the analysis reported here.

Author Contributions

C.G., D.T., Y.X.Y., and T.W. contributed to interpretation of the results as well as drafting and revising the manuscript, and agree to be accountable for all aspects of the work. J.H.Z., J.W., Y.W., and J.Y. contributed to data analysis. T.W., H.Y.Z., H.W.D., C.G., Y.X.Y., Z.Q.J., H.Y.Z., Y.L.L., J.X.Y., C.M.Z., and C.C. contributed to planning, design, and data collection of this analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Yang, Y., Tian, D. et al. Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans. Eur J Drug Metab Pharmacokinet 47, 639–652 (2022). https://doi.org/10.1007/s13318-022-00780-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00780-x

Navigation