Skip to main content
Log in

Prediction of Half-Life Extension of Peptides via Serum Albumin Binding: Current Challenges

  • Current Opinion
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The development of peptide therapeutics has increased enormously in recent decades. Many of the peptide drugs and antibody fragments that lack Fc backbone have a short half-life in circulation. In general, the half-life supports the design of the dosing regimen and frequency of administration, which are key aspects in the discovery of peptide drugs intended for long duration of action. Less frequent administration such as weekly or monthly can improve compliance and adherence to therapy. Serum albumin binding is a key approach to extend the half-life of peptide drugs. Despite the evidence of half-life prolongation of a variety of peptide drugs via albumin, quantitative prediction for humans is still a key question. Challenges in the measurement of albumin binding and in understanding the clearance mechanisms can limit quantitative prediction. We integrated pharmacokinetic concepts and albumin binding across species in a quantitative model to be used as a tool for prediction of half-life. Preliminary validation on a limited dataset indicated a good correlation between predicted and observed values. Further development of more quantitative models is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vugmeyster Y, Xu X, Theil FP, et al. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem. 2012;3(4):73–92.

    Article  Google Scholar 

  2. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    Article  CAS  Google Scholar 

  3. Saini SD, Schoenfeld P, Kaulback K, Bubinsky MC. Effect of medication dosing frequency on adherence. Am J Manag Care. 2009;15(6):e22-33.

    PubMed  Google Scholar 

  4. Ingersoll KS, Cohen J. The impact of medication regimen factors on adherence to chronic treatment: a review of literature. J Behav Med. 2008;31(3):213–24.

    Article  Google Scholar 

  5. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article  CAS  Google Scholar 

  6. Meibohm B, Zhou H. Characterizing the impact of renal impairement on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52(1 Suppl):54S-62S.

    PubMed  Google Scholar 

  7. Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 2013;1830(12):5526–34.

    Article  CAS  Google Scholar 

  8. Mueller D, Karle A, Meissburger B, et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem. 2007;282(17):12650–60.

    Article  CAS  Google Scholar 

  9. Vuignier K, Schappler J, Veuthey JL, et al. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398(1):53–66.

    Article  CAS  Google Scholar 

  10. Rowland M, Tozer TN. Clinical pharmacokinetics concepts and application. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 1995.

    Google Scholar 

  11. Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a comprehensive review. Gut Liver. 2017;11(1):27–37.

    Article  CAS  Google Scholar 

  12. Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370–80.

    Article  CAS  Google Scholar 

  13. Granhall C, Donsmark M, Blicher TM, et al. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin Pharmacokinet. 2019;58(6):781–91.

    Article  CAS  Google Scholar 

  14. Gabrielson J, Weiner D. Pharmacokinetic & pharmacodynamic data analysis. 4th ed. Halmstad: Printografen AB; 2010.

    Google Scholar 

  15. Yanez JA, Remsberg CM, Sayre CL, et al. Flip-flop pharmacokinetics – delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2(5):643–72.

    Article  Google Scholar 

  16. Ryberg LA, Sønderby P, Barrientos F, et al. Solution structures of long-acting insulin analogues and their complexes with albumin. Acta Crystallogr D Struct Biol. 2019;75(Pt 3):272–82.

    Article  CAS  Google Scholar 

  17. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  Google Scholar 

  18. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39.

    Article  CAS  Google Scholar 

  19. Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.

    Article  CAS  Google Scholar 

  20. Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):135.

    Article  Google Scholar 

  21. Hopp J, Hornig N, Zettlitz KA, et al. The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel. 2010;23(11):827–34.

    Article  CAS  Google Scholar 

  22. Adams R, Griffin L, Compson JE, et al. Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin Fv domain: An investigation into the correlation between affinity and serum half-life. MAbs. 2016;8(7):1336–46.

    Article  CAS  Google Scholar 

  23. Wunder A, Mueller-Ladner U, Stelzer EHK, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol. 2003;170(9):4793–801.

    Article  CAS  Google Scholar 

  24. Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatibility complex–related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197(3):315–22.

    Article  CAS  Google Scholar 

  25. Peters T. Serum albumin. Adv Protein Chem. 1985;37:161–245.

    Article  CAS  Google Scholar 

  26. Dixon FJ, Maurer PH, Deichmller MP. Half-lives of homologous serum albumins in several species. Proc Soc Exp Biol Med. 1953;83(2):287–8.

    Article  CAS  Google Scholar 

  27. Dich J, Nielsen K. Metabolism and distribution of 131 I-labelled albumin in the pig. Can J Comp Med Vet Sci. 1963;27(11):269–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabrielsson J, Dolgos H, Gillberg PG, et al. Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Rev Drug Discov Today. 2009;14(7–8):358–72.

    Article  CAS  Google Scholar 

  29. Battelino T, Rasmussen MH, De Schepper J, et al. Somapacitan, a once-weekly reversible albumin-binding GH derivative, in children with GH deficiency: a randomized dose-escalation trial. Clin Endocrinol. 2017;87:350–8.

    Article  CAS  Google Scholar 

  30. Sogroya® (somapacitan) BLA # 761156. US Food and Drug Administration, Non-clinical review 2019. Center for drug evaluation and research. Application number 761156Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/761156Orig1s000PharmR.pdf. Accessed 19 Oct 2020.

  31. Zeisel HJ, von Petrykowski W, Wais U. Pharmacokinetics and short-term metabolic effects of mammalian cell-derived biosynthetic human growth hormone in man. Horm Res. 1992;37(Suppl 2):5–13.

    Article  Google Scholar 

  32. Ritschel WA, Vachharajani NN, Johnson RD, et al. The allometric approach for interspecies scaling of pharmacokinetic parameters. Camp Biochem Physiol. 1992;103C(2):249–53.

    CAS  Google Scholar 

  33. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  Google Scholar 

  34. Nguyen A, Reyes AE, Zhang M, et al. The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel. 2006;19(7):291–7.

    Article  CAS  Google Scholar 

  35. Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Med Chem Commun. 2019;10:1068–81.

    Article  CAS  Google Scholar 

  36. Ungewiss J, Gericke S, Boriss H. determination of the plasma protein binding of liraglutide using the EScalate* equilibrium shift assay. J Pharm Sci. 2019;108(3):1309–14.

    Article  CAS  Google Scholar 

  37. Donner DB. Receptor- and non-receptor-mediated uptake and degradation of insulin by hepatocytes. Biochem J. 1982;208(1):211–9.

    Article  CAS  Google Scholar 

  38. Mager DE. Target-mediated drug disposition and dynamics. Review Biochem Pharmacol. 2006;72(1):1–10.

    Article  CAS  Google Scholar 

  39. Glassman PM, Muzykantov VR. Target-mediated exposure enhancement: a previously unexplored limit of TMDD. J Pharmacokinet Pharmacodyn. 2020;47:411–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Hijazi.

Ethics declarations

Funding

No source of funding.

Conflicts of interest

The author is an employee of Sanofi-Aventis Deutschland GmbH. The author has no conflict of interest related to this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data in this article are based on published literature. Input data used in the quantitative model are presented with reference to their source.

Code availability

Not applicable.

Author contributions

YH is the only author. He wrote this article, he contributed to the totality of this work including literature review, equations development and data analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hijazi, Y. Prediction of Half-Life Extension of Peptides via Serum Albumin Binding: Current Challenges. Eur J Drug Metab Pharmacokinet 46, 163–172 (2021). https://doi.org/10.1007/s13318-020-00664-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00664-y

Navigation