Skip to main content
Log in

Clinical Pharmacokinetic and Pharmacodynamic Profile of Lenvatinib, an Orally Active, Small-Molecule, Multitargeted Tyrosine Kinase Inhibitor

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Lenvatinib is a multikinase inhibitor that targets vascular endothelial growth factor (VEGF) receptors 1–3, fibroblast growth factor receptors 1–4, platelet-derived growth factor receptor-alpha, and RET and KIT proto-oncogenes. Lenvatinib is approved for the treatment of radioiodine-refractory differentiated thyroid cancer in the United States (US), European Union (EU), Canada, Japan, and Switzerland. It is also approved in combination with everolimus for the treatment of advanced renal cell carcinoma following ≥1 VEGF-targeted treatment in the US and EU. In addition, lenvatinib is under investigation for the treatment of hepatocellular carcinoma. As lenvatinib becomes more widely available, a better understanding of its pharmacokinetic profile has become increasingly important. Following oral administration, lenvatinib is absorbed rapidly and is metabolized extensively prior to excretion. This metabolism is mediated by multiple pathways, and several metabolites of lenvatinib have been identified. The effect of food intake on lenvatinib exposure has also been studied and was found to not significantly influence overall exposure to the drug. Exposure to lenvatinib is increased in patients with severe hepatic impairment, indicating that dose reduction must be considered for those patients. The findings summarized here indicate that the clinical pharmacokinetic and pharmacodynamic profile for lenvatinib are predictable, with a dose-independent absorption and elimination profile that supports once-daily administration, and has minimal effects due to mild or moderate renal or hepatic impairment or drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N. Vascular endothelial growth factor. Trends Cardiovasc Med. 1993;3:244–50.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  4. Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–24.

    Article  CAS  PubMed  Google Scholar 

  5. Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9:639–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jasim S, Ozsari L, Habra MA. Multikinase inhibitors use in differentiated thyroid carcinoma. Biologics. 2014;8:281–91.

    PubMed  PubMed Central  Google Scholar 

  8. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14:5459–65.

    Article  CAS  PubMed  Google Scholar 

  9. Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122:664–71.

    Article  CAS  PubMed  Google Scholar 

  10. Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013;340:97–103.

    Article  CAS  PubMed  Google Scholar 

  11. Cabanillas ME, Habra MA. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev. 2016;42:47–55.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto Y, Matsui J, Matsushima T, Obaishi H, Miyazaki K, Nakamura K, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ikuta K, Yano S, Trung VT, Hanibuchi M, Goto H, Li Q, et al. E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res. 2009;15:7229–37.

    Article  CAS  PubMed  Google Scholar 

  14. Yamada K, Yamamoto N, Yamada Y, Nokihara H, Fujiwara Y, Hirata T, et al. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin Cancer Res. 2011;17:2528–37.

    Article  CAS  PubMed  Google Scholar 

  15. Boss DS, Glen H, Beijnen JH, Keesen M, Morrison R, Tait B, et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer. 2012;106:1598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishio M, Horai T, Horiike A, Nokihara H, Yamamoto N, Takahashi T, et al. Phase 1 study of lenvatinib combined with carboplatin and paclitaxel in patients with non-small-cell lung cancer. Br J Cancer. 2013;109:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molina AM, Hutson TE, Larkin J, Gold AM, Wood K, Carter D, et al. A phase 1b clinical trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in combination with everolimus for treatment of metastatic renal cell carcinoma (RCC). Cancer Chemother Pharmacol. 2014;73:181–9.

    Article  CAS  PubMed  Google Scholar 

  18. Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 2015;121:2749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  Google Scholar 

  20. Schlumberger M, Jarzab B, Cabanillas ME, Robinson B, Pacini F, Ball DW, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 2016;22:44–53.

    Article  CAS  PubMed  Google Scholar 

  21. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16:1473–82.

    Article  CAS  PubMed  Google Scholar 

  22. Shumaker R, Aluri J, Fan J, Martinez G, Ren M, Chen K. Evaluation of the effects of formulation and food on the pharmacokinetics of lenvatinib (E7080) in healthy volunteers. Int J Clin Pharmacol Ther. 2014;52:284–91.

    Article  CAS  PubMed  Google Scholar 

  23. Lee L, D’Angelo P, Verbel D, Martinez G, Aluri J, Brimhall D. A randomized, three-treatment, three-period, six-sequence-crossover, single-center, bioequivalence study to evaluate the impact of different 10-mg crystalline forms on the pharmacokinetics of lenvatinib in healthy volunteers. Int J Clin Pharmacol Ther. 2015;53:190–8.

    Article  CAS  PubMed  Google Scholar 

  24. Shumaker R, Fan J, Martinez G, Chen K. Comparative biovailability study of a 10-mg capsule and a 10-mg tablet of lenvatinib (E7080) in health subjects [abstract]. Clin Pharmacol Ther. 2012;91(Suppl 1):S68 (Abstract PII-46).

  25. Nakamichi S, Nokihara H, Yamamoto N, Yamada Y, Honda K, Tamura Y, et al. A phase 1 study of lenvatinib, multiple receptor tyrosine kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;76:1153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta A, Jarzab B, Capdevila J, Shumaker R, Hussein Z. Population pharmacokinetic analysis of lenvatinib in healthy subjects and patients with cancer. Br J Clin Pharmacol. 2016;81:1124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mano Y, Kusano K. A validated LC-MS/MS method of total and unbound lenvatinib quantification in human serum for protein binding studies by equilibrium dialysis. J Pharm Biomed Anal. 2015;114:82–7.

    Article  CAS  PubMed  Google Scholar 

  28. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–21.

    Article  CAS  PubMed  Google Scholar 

  29. Dubbelman AC, Rosing H, Thijssen B, Gebretensae A, Lucas L, Chen H, et al. Development and validation of LC-MS/MS assays for the quantification of E7080 and metabolites in various human biological matrices. J Chromatogr B Anal Technol Biomed Life Sci. 2012;887–888:25–34.

    Article  Google Scholar 

  30. Dubbelman AC, Rosing H, Nijenhuis C, Huitema AD, Mergui-Roelvink M, Gupta A, et al. Pharmacokinetics and excretion of (14)C-lenvatinib in patients with advanced solid tumors or lymphomas. Invest New Drugs. 2015;33:233–40.

    Article  CAS  PubMed  Google Scholar 

  31. Dubbelman AC, Nijenhuis CM, Jansen RS, Rosing H, Mizuo H, Kawaguchi S, et al. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison. Invest New Drugs. 2016;34:300–18.

    Article  CAS  PubMed  Google Scholar 

  32. Inoue K, Asai N, Mizuo H, Fukuda K, Kusano K, Yoshimura T. Unique metabolic pathway of [14C]lenvatinib after oral administration to male cynomolgus monkey. Drug Metab Dispos. 2012;40:662–70.

    Article  CAS  PubMed  Google Scholar 

  33. Inoue K, Mizuo H, Kawaguchi S, Fukuda K, Kusano K, Yoshimura T. Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase. Drug Metab Dispos. 2014;42:1326–33.

    Article  PubMed  Google Scholar 

  34. Shumaker R, Aluri J, Fan J, Martinez G, Thompson GA, Ren M. Effect of rifampicin in the pharmacokinetics of lenvatinib in health adults. Clin Drug Investig. 2014;34:651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eisai Inc. Lenvima (lenvatinib) [prescribing information]. Woodcliff Lake, NJ: Eisai Inc.; 2015.

  36. Shumaker R, Aluri J, Fran J, Martinez G, Thompson GA, Ren M. Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants. Clin Pharmacol Drug Dev. 2015;4:155–60.

    Article  CAS  PubMed  Google Scholar 

  37. Shumaker R, Aluri J, Fan J, Martinez G, Pentikis H, Ren M. Influence of hepatic impairment on lenvatinib pharmacokinetics following single-dose oral administration. J Clin Pharmacol. 2015;55:317–27.

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda M, Okusaka T, Mitsunaga S, Ueno H, Tamai T, Suzuki T, et al. Safety and pharmacokinetics of lenvatinib in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2016;22:1385–94.

    Article  CAS  PubMed  Google Scholar 

  39. Hong DS, Kurzrock R, Falchook GS, Andresen C, Kwak J, Ren M, et al. Phase 1b study of lenvatinib (E7080) in combination with temozolomide for treatment of advanced melanoma. Oncotarget. 2015;6:43127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hong DS, Kurzrock R, Wheler JJ, Naing A, Falchook GS, Fu S, et al. Phase I dose-escalation study of the multikinase inhibitor lenvatinib in patients with advanced solid tumors and in an expanded cohort of patients with melanoma. Clin Cancer Res. 2015;21:4801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koyama N, Saito K, Nishioka Y, Yusa W, Yamamoto N, Yamada Y, et al. Pharmacodynamic change in plasma angiogenic proteins: a dose-escalation phase 1 study of the multi-kinase inhibitor lenvatinib. BMC Cancer. 2014;14:530.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marech I, Gadaleta CD, Ranieri G. Possible prognostic and therapeutic significance of c-Kit expression, mast cell count and microvessel density in renal cell carcinoma. Int J Mol Sci. 2014;15:13060–76.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Achira M, Suzuki H, Ito K, Sugiyama Y. Comparative studies to determine the selective inhibitors for P-glycoprotein and cytochrome P4503A4. AAPS Pharm Sci. 1999;1:E18.

    Article  CAS  Google Scholar 

  45. Kiyota N, Schlumberger M, Muro K, Ando Y, Takahashi S, Kawai Y, et al. Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci. 2015;106:1714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Anubha Gupta, PhD, formerly of Eisai, Inc., for contributions to the analyses and Nicolette Belletier, PhD, an employee of Oxford PharmaGenesis, for medical writing assistance.

Some of the data included in this review come from clinical studies that were sponsored by Eisai Inc. (Woodcliff Lake, NJ, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Shumaker.

Ethics declarations

Conflicts of interest

Ziad Hussein, Hitoshi Mizuo, Seiichi Hayato, Masayuki Namiki, and Robert Shumaker are employees of Eisai.

Funding

Editorial assistance was provided by Oxford PharmaGenesis Inc. and was funded by Eisai Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, Z., Mizuo, H., Hayato, S. et al. Clinical Pharmacokinetic and Pharmacodynamic Profile of Lenvatinib, an Orally Active, Small-Molecule, Multitargeted Tyrosine Kinase Inhibitor. Eur J Drug Metab Pharmacokinet 42, 903–914 (2017). https://doi.org/10.1007/s13318-017-0403-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0403-4

Keywords

Navigation