Skip to main content
Log in

Identification of Naringin Metabolites in Human Urine and Feces

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Naringin, an active flavanone glycoside, has been widely considered as a prospective antitussive and expectorant. The present study aimed to elucidate the metabolic profile of naringin in the human body.

Methods

Four male and three female volunteers (20–30 years old and 18.8–21.7 kg/m2 Body Mass Index) were orally administrated 320 mg naringin; their urine and feces were collected at different times and the corresponding metabolites were identified with a high resolution ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF–MS/MS) system.

Results

Sixteen conjugative metabolites and five polyphenols were identified. These detected metabolites varied in the types, relative responses, and excretion times among different individuals.

Conclusions

The results revealed that naringin underwent extensive phase II metabolism in the human body and yielded an array of conjugated products. This study provided a reference for further clinical studies and in vivo metabolism of other flavonoids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad SF, Attia SM, Bakheet SA, Zoheir KMA, Ansari MA, Korashy HM, et al. Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-kappa b, STAT3 and pro-inflammatory mediators and enhancement of I kappa B alpha and anti-inflammatory cytokines. Inflammation. 2015;38(2):846–57.

    Article  CAS  PubMed  Google Scholar 

  2. Bacanli M, Basaran AA, Basaran N. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol. 2015;81:160–70.

    Article  CAS  PubMed  Google Scholar 

  3. Xulu S, Owira PMO. Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. J Cardiovasc Pharmacol. 2012;59(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  4. Gopinath K, Sudhandiran G. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein. Can J Physiol Pharmacol. 2015;94(1):1–7.

    Google Scholar 

  5. Gao S, Li P, Yang H, Fang S, Su W. Antitussive effect of naringin on experimentally induced cough in Guinea pigs. Planta Med. 2011;77(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Wu H, Nie YC, Chen JL, Su WW, Li PB. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-kappa B pathway. Int Immunopharmacol. 2011;11(10):1606–12.

    Article  CAS  PubMed  Google Scholar 

  7. Orrego-Lagaron N, Martinez-Huelamo M, Vallverdu-Queralt A, Lamuela-Raventos RM, Escribano-Ferrer E. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br J Nutr. 2015;114(2):169–80.

    Article  CAS  PubMed  Google Scholar 

  8. Lin SP, Hou YC, Tsai SY, Wang MJ, Lee Chao PD. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. BioMedicine (Netherlands). 2014;4(3):1–6.

    Google Scholar 

  9. Zou W, Yang C, Liu M, Su W. Tissue distribution study of naringin in rats by liquid chromatography–tandem mass spectrometry. Arzneimittelforschung. 2012;62(4):181–6.

    Article  CAS  PubMed  Google Scholar 

  10. Fang TZ, Wang YG, Ma Y, Su WW, Bai Y, Zhao PY. A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma. J Pharm Biomed Anal. 2006;40(2):454–9.

    Article  CAS  PubMed  Google Scholar 

  11. Liu MH, Zou W, Yang CP, Peng W, Su WW. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm Drug Dispos. 2012;33(3):123–34.

    Article  PubMed  Google Scholar 

  12. Hsiu SL, Huang TY, Hou YC, Chin DH, Chao PDL. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002;70(13):1481–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mata-Bilbao MD, Andres-Lacueva C, Roura E, Jaduregui O, Escriban E, Torre C, et al. Absorption and pharmacokinetics of grapefruit flavanones in beagles. Br J Nutr. 2007;98(1):86–92.

    Article  Google Scholar 

  14. Ishii K, Furuta T, Kasuya Y. Mass spectrometric identification and high-performance liquid chromatographic determination of a flavonoid glycoside naringin in human urine. J Agric Food Chem. 2000;48(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61(4):472–7.

    CAS  PubMed  Google Scholar 

  16. Bredsdorff L, Nielsen ILF, Rasmussen SE, Cornett C, Barron D, Bouisset F, et al. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from alpha-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010;103(11):1602–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang JM, Brodbelt JS. Screening flavonoid metabolites of naringin and narirutin in urine after human consumption of grapefruit juice by LC–MS and LC–MS/MS. Analyst. 2004;129(12):1227–33.

    Article  CAS  PubMed  Google Scholar 

  18. Pereira-Caro G, Borges G, van der Hooft JD, Clifford MN, Del Rio D, Lean MEJ, et al. Orange juice (poly)phenols are highly bioavailable in humans. Am J Clin Nutr. 2014;100(5):1378–84.

    Article  CAS  PubMed  Google Scholar 

  19. Vallejo F, Larrosa M, Escudero E, Zafrilla MP, Cerda B, Boza J, et al. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem. 2010;58(10):6516–24.

    Article  CAS  PubMed  Google Scholar 

  20. Mullen W, Archeveque MA, Edwards CA, Matsumoto H, Crozier A. Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem. 2008;56(23):11157–64.

    Article  CAS  PubMed  Google Scholar 

  21. Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SKS, et al. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 2004;36(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  22. Zou W, Luo YL, Liu MH, Chen S, Wang S, Nie YC, et al. Human intestinal microbial metabolism of naringin. Eur J Drug Metab Pharmacokinet. 2015;40(3):363–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ma YL, Li QM, Van den Heuvel H, Claeys M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(12):1357–64.

    Article  CAS  Google Scholar 

  24. Fabre N, Rustan I, Hoffmann ED, Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom. 2001;12(6):707–15.

    Article  CAS  PubMed  Google Scholar 

  25. Wang MJ, Chao PDL, Hou YC, Hsiu SL, Wen KC, Tsai SY. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. J Food Drug Anal. 2006;14(3):247–53.

    CAS  Google Scholar 

  26. Ruan FY, Chen RD, Li JH, Zhang M, Xie KB, Wang Y, et al. Sulfation of naringenin by Mucor sp. Zhongguo Zhongyao Zazhi. 2014;39(11):2039–42.

    CAS  PubMed  Google Scholar 

  27. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  28. Yanez JA, Remsberg CM, Miranda ND, Vega-Villa KR, Andrews PK, Davies NM. Pharmacokinetics of selected chiral flavonoids: hesperetin, naringenin and eriodictyol in rats and their content in fruit juices. Biopharm Drug Dispos. 2008;29(2):63–82.

    Article  CAS  PubMed  Google Scholar 

  29. Labib S, Erb A, Kraus M, Wickert T, Richling E. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids. Mol Nutr Food Res. 2004;48(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  30. Jenner AM, Rafter J, Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med. 2005;38(6):763–72.

    Article  CAS  PubMed  Google Scholar 

  31. Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003;69(10):5849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simons AL, Renouf M, Hendrich S, Murphy PA. Human gut microbial degradation of flavonoids: structure-function relationships. J Agric Food Chem. 2005;53(10):4258–63.

    Article  CAS  PubMed  Google Scholar 

  33. Serra A, Macia A, Romero MP, Reguant J, Ortega N, Motilva MJ. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130(2):383–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financial supported by the fund of National Major Scientific and Technical Special Project of China (No. 2015ZX09101014), National Natural Science Foundation of China (No. 81374041), and Applied Science and Technology R&D Special Fund Project of Guangdong Province (No. 2015B020234004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Su.

Ethics declarations

Conflict of interest

All the authors declare that there are no known conflicts of interest with this publication.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was conducted with the authorization of the Ethics Committee of the School of Life Science, Sun Yat-sen University, Guangzhou 510275, P.R. China.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Bai, Y., Peng, W. et al. Identification of Naringin Metabolites in Human Urine and Feces. Eur J Drug Metab Pharmacokinet 42, 647–656 (2017). https://doi.org/10.1007/s13318-016-0380-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0380-z

Keywords

Navigation