Skip to main content
Log in

Triggering dieback in an invasive plant: endophyte diversity and pathogenicity

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Dieback causes a progressive reduction in plant population health, resulting in the death of plant parts and often plant death. It is prevalent in many invasive woody weeds in Australia and has been suggested as a potential mechanism for biocontrol of these species. Parkinsonia aculeata one such invasive tree in northern Australia. It has naturalised across a wide range of climatic zones and some populations have been heavily reduced by dieback occurrence. The cause(s) of dieback in parkinsonia remain elusive, although fungal endophytes have been previously implicated. In this study, we characterised the culturable fungal endophyte community of healthy and dieback-affected parkinsonia using culture-based techniques, and identified cultured isolates via amplicon sequencing of the internal transcribed spacer (ITS) of the rDNA operon. Eight isolates, identified as pathogens, were selected for a 10-week pathogenicity trial, including water stress treatments, on parkinsonia seedlings. We isolated a taxonomically diverse fungal community from parkinsonia, representing 54 unique species from 25 families. Communities were similar across healthy and dieback-affected plants, but differed by plant tissue. Of the eight putative pathogenic isolates tested in the pathogenicity trial, inoculation with Lasiodiplodia pseudotheobromae, Botryosphaeria dothidea and Pestalotiopsis mangiferae resulted in the largest lesions, but systemic infection or dieback-like symptoms were not observed in any treatment despite plant stress being induced by drought or inundation. We concluded that inoculation of parkinsonia with the tested putative fungal pathogens is unlikely to result in dieback, which has implications for future work in biocontrol of parkinsonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References 

  • Adair RJ, Burgess T, Serdani M, Barber P (2009) Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias. Fungal Ecol 2:121–134. doi:10.1016/j.funeco.2009.02.003

    Article  Google Scholar 

  • Agrios GN (2005) Plant Pathology, Elsevier Academic Press, Burlington MARudgers JA & Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J. Ecol 97:2 247-255. doi: 10.1111/j.1365-2745.2008.01478.x

  • Armengol J, Vicent A, Martinez-Culebras P, Bruton BD, Garcia-Jimenez J (2003) Identification, occurrence and pathogenicity of Rhizopycnis vagum on muskmelon in Spain. Plant Pathol 52:68–73. doi:10.1046/j.1365-3059.2003.00796.x

    Article  Google Scholar 

  • Babu RM, Sajeena A, Seetharaman K (2003) Bioassay of the potentiality of Alternaria alternata (Fr.) keissler as a bioherbicide to control water hyacinth and other aquatic weeds. Crop Prot 22:1005–1013. doi:10.1016/S0261-2194(03)00115-7

    Article  Google Scholar 

  • Bacon CW, Hinton DM (2007) Isolation, in planta detection, and uses of endophytic bacteria. In: Hurst C, Crawford RL, Mills AL, Garland JL, Stetzenbach LD, Lipson DA (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 638–651

    Google Scholar 

  • Bakys R, Vasaitis R, Barklund P, Thomsen I, Stenlid J (2009) Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur J Forest Pathol 128:51–60. doi:10.1007/s10342-008-0238-2

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) American Phytopathological society. St, Paul, pp 31–65

    Google Scholar 

  • Chen F, Lu L, Wang D, Wang Y, Ni H, Du Z (2013) Biological characterization and genetic diversity analysis of two species of Pestalotiopsis causing twig dieback of Myrica rubra. Eur J Forest Pathol 136:737–747. doi:10.1007/s10658-013-0203-x

    Article  CAS  Google Scholar 

  • Crist CR, Schoeneweiss DF (1974) The influence of controlled stresses on susceptibility of European white birch stems to attack by Botryosphaeria dothidea. Phytopathology 65:369–373

    Google Scholar 

  • Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99:664–680. doi:10.2307/20444885

    Article  CAS  PubMed  Google Scholar 

  • de Wet J, Wingfield MJ, Coutinho TA, Wingfield BD (2000) Characterization of Sphaeropsis sapinea isolates from South Africa, Mexico, and Indonesia. Plant Dis 84:151–156. doi:10.1094/pdis.2000.84.2.151

    Article  Google Scholar 

  • Deveze M et al (2004) Approaches to the management of parkinsonia (Parkinsonia aculeata) in Australia. Department of Natural Resources, Mines and Energy, Queensland

    Google Scholar 

  • Diplock ND (2016) Parkinsonia dieback: investigations into its cause, ecology and potential for biological control. The University of Queensland, PhD

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. 32:1792–1797. doi:10.1093/nar/gkh340

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St Paul

    Google Scholar 

  • Espinoza JG, Briceno EX, Keith LM, Latorre BA (2008) Canker and twig dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp in Chile. Plant Dis 92:1407–1414. doi:10.1094/pdis-92-10-1407

    Article  Google Scholar 

  • Evans HC (2000) Evaluating plant pathogens for biological control of weeds: an alternative view of pest risk assessment. Australas. Plant Pathol 29:1–14. doi:10.1071/AP00001

    Google Scholar 

  • Ferreira JHS, Matthee FN, Thomas AC (1989) Fungi associated with dieback and pruning wounds of grapevines in South Africa. S Afr J Enol Vitic 10:62–66

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • González P, Alaniz S, Montelongo MJ, Rauduviniche L, Rebellato J, Silvera-Perez E, Mondino P (2012) First report of Pestalotiopsis clavispora causing dieback on blueberry in Uruguay. Plant Dis 96:914–914. doi:10.1094/pdis-12-11-1070-pdn

    Article  Google Scholar 

  • Haque A (2015) Investigation of the fungi associated with dieback of prickly acacia (Vachellia nilotica subsp. indica) in Northern Australia. PhD, The University of Queensland

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. doi:10.1017/S0953756201004725

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Houston DR (1992) A host-stress-saprogen model for forest dieback-decline diseases. In: Manion PD, Lachance D (eds) Forest decline concepts. The American Phytopathological Society, St. Paul, pp 3–25

    Google Scholar 

  • Ismail AM, Cirvilleri G, Polizzi G, Crous PW, Groenewald JZ, Lombard L (2012) Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt. Australas Plant Path 41:649–660. doi:10.1007/s13313-012-0163-1

    Article  Google Scholar 

  • Ismail AM, Cirvilleri G, Polizzi G (2013) Characterisation and pathogenicity of Pestalotiopsis uvicola and Pestalotiopsis clavispora causing grey leaf spot of mango (Mangifera indica L.) in Italy. Eur J Forest Pathol. 135:619–625. doi:10.1007/s10658-012-0117-z

    Article  CAS  Google Scholar 

  • Jami F, Slippers B, Wingfield MJ, Gryzenhout M (2013) Greater Botryosphaeriaceae diversity in healthy than associated diseased Acacia karroo tree tissues. Australas Plant Path 42:421–430. doi:10.1007/s13313-013-0209-z

    Article  CAS  Google Scholar 

  • Johnson GI, Mead AJ, Cooke AW, Dean JR (1992) Mango stem end rot pathogens - fruit infections by endophytic colonization of the inflorescence and pedicel. Ann Appl Biol 120:225–234. doi:10.1111/j.1744-7348.1992.tb03420.x

    Article  Google Scholar 

  • Keith LM, Velasquez ME, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava, in Hawaii. Plant Dis 90:16–23. doi:10.1094/pd-90-0016

    Article  CAS  Google Scholar 

  • Knapp DG, Pintye A, Kovacs GM (2012) The dark side is not fastidious - dark septate endophytic fungi of native and invasive plants of semiarid Sandy areas. PLoS One 7:e32570. doi:10.1371/journal.pone.0032570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2016) Tests in Linear Mixed Effects Models: Package 'lmerTest' V3.3

  • La Porta N, Capretti P, Thomsen IM, Kasanen AM, Hietala AM, Von Weissenberg K (2008) Forest pathogens with higher damage potential due to climate change in Europe. Can J Plant Pathol 30(2):177–195. doi:10.1080/07060661.2008.10540534

    Article  Google Scholar 

  • Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011) Pestalotiopsis-morphology, phylogeny, biochemistry and diversity. Fungal Divers 50:167–187. doi:10.1007/s13225-011-0125-x

    Article  Google Scholar 

  • Manion PD (1991) Tree disease concepts. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Mehl JWM, Slippers B, Roux J, Wingfield MJ (2013) Cankers and other diseases cause by the Botryosphaeriaceae. CABI, Wallingford

    Google Scholar 

  • Mueller-Dombois D (1987) Natural dieback in forests. Bioscience 37:575–583. doi:10.2307/1310668

    Article  Google Scholar 

  • Nguyen NH et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. doi:10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447. doi:10.1038/nrmicro.2016.59

    Article  CAS  PubMed  Google Scholar 

  • Peršoh D (2015) Plant-associated fungal communities in the light of meta'omics. Fungal Divers 75:1–25. doi:10.1007/s13225-015-0334-9

    Article  Google Scholar 

  • Pitt WM, Trouillas FP, Gubler WD, Savocchia S, Sosnowski MR (2013) Pathogenicity of Diatrypaceous fungi on grapevines in Australia. Plant Dis 97:749–756. doi:10.1094/pdis-10-12-0954-re

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing, 3.1.1 ed. R foundation for statistical computing, Vienna

  • Raghavendra AK et al. (2017) Characterization of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. Fungal Ecol Accepted 10 Jan 2017

  • Rayachhetry MB, Blakeslee GM, Miller T (1996) Histopathology of Botryosphaeria ribis in Melaleuca quinquenervia: pathogen invasion and host response. Int J Plant Sci 157:219–227. doi:10.1086/297340

    Article  Google Scholar 

  • Sacdalan A (2015) Mimosa pigra dieback in the northern territory. Investigation into possible causes. PhD, The University of Queensland, Australia

    Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488. doi:10.1038/nrmicro1159

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Paper presented at the 2nd International Congress on Symbiosis, Woods Hole Massachusetts, 13–18 April 1997

  • Schwarz CJ (2015) Two-factor split-plot designs. Course notes for beginning and intermediate statistics. Simon Fraser University, British Columbia

    Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106. doi:10.1016/j.fbr.2007.06.002

    Article  Google Scholar 

  • Steinrucken TV, Bissett A, Powell JR, Raghavendra AKH, van Klinken RD (2016) Endophyte community composition is associated with dieback occurrence in an invasive tree. Plant Soil 405:311–323. doi:10.1007/s11104-015-2529-y

    Article  CAS  Google Scholar 

  • Stukely MJC, Crane CE (1994) Genetically based resistance of Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology 84:650. doi:10.1094/Phyto-84-650

    Article  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & a. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540. doi:10.1007/s11274-005-7579-5

    Article  Google Scholar 

  • Thorn RG, Scott J, Lachance MA (2007) Methods for studying terrestrial fungal ecology and diversity. In: Reddy CA (ed) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington, pp 929–950

    Google Scholar 

  • Thorp JR, Lynch R (2000) The determination of the weeds of National Significance. National Weeds Strategy Executive Committee, Launceston

    Google Scholar 

  • Toh R (2009) Investigation of fungi pathogenic towards seedlings of Parkinsonia aculeata – their potential for use as mycoherbicides. The University of Queensland

  • Tsahouridou PC, Thanassoulopoulos CC (2000) First report of Alternaria alternata as a dieback pathogen of kiwifruit. Plant Dis 84:371–371. doi:10.1094/PDIS.2000.84.3.371C

    Article  Google Scholar 

  • Tukey JW (1949) Comparing individual means in the analysis of variance biometrics 5:99 doi:10.2307/3001913

  • van Klinken RD, Campbell SD, Heard TA, McKenzie J, March N (2009) The biology of Australian weeds: Parkinsonia aculeata L. Plant Prot Q 24:100–117

    Google Scholar 

  • Vega FE et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai'i. Mexico Puerto Rico Fungal Ecol 3:122–138. doi:10.1016/j.funeco.2009.07.002

    Article  Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211. doi:10.1111/j.1744-7348.1974.tb06886.x

    Article  Google Scholar 

  • Webber JF, Gibbs J, Hendry S (2004) Phytophthora disease of Alder. Forestry Commission, Edinburgh

    Google Scholar 

  • Westphal A, Xing L, Goodwin SB (2011) Mature watermelon vine decline: suppression with fumigants of a soil-borne problem and association with Rhizopycnis vagum. Crop Prot 30:111–117. doi:10.1016/j.cropro.2010.11.014

    Article  Google Scholar 

  • Whyte G, Howard K, Hardy GEJ, Burgess T (2016) The tree decline recovery seesaw; a conceptual model of the decline and recovery of drought stressed plantation trees. Forest Ecol Manag 370:102–113. doi:10.1016/j.foreco.2016.03.041

    Article  Google Scholar 

  • Wilson CG, Pitkethley RN (1992) Botryodiplodia dieback of Mimosa pigra, a noxious weed in northern Australia. Plant Pathol 41:777–779. doi:10.1111/j.1365-3059.1992.tb02563.x

    Article  Google Scholar 

  • Zwolinski JB, Swart WJ, Wingfield MJ (1990) Economic impact of a post-hail outbreak of dieback induced by Sphaeropsis sapinea. Eur J Forest Pathol 20:405–411. doi:10.1111/j.1439-0329.1990.tb01155.x

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271), the Australian Government via an Australian Post Graduate Award and the Hawkesbury Institute for the Environment at Western Sydney University. The authors thank Kelli Pukallus (Biosecurity Queensland) for fieldwork assistance, Eva Pôtet (Agro Campus Oest, Paris) and Gio Fichera (CSIRO) for help with the glasshouse trial, Dr. Gavin Hunter, Dr. Luke Barrett (CSIRO), and two anonymous reviewers for helpful comments and suggestions which greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Steinrucken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinrucken, T.V., Raghavendra, A.K.H., Powell, J.R. et al. Triggering dieback in an invasive plant: endophyte diversity and pathogenicity. Australasian Plant Pathol. 46, 157–170 (2017). https://doi.org/10.1007/s13313-017-0472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-017-0472-5

Keywords

Navigation