Skip to main content

Advertisement

Log in

Patient-Derived Orthotopic Xenograft models in gastric cancer: a systematic review

  • Review Article
  • Published:
Updates in Surgery Aims and scope Submit manuscript

Abstract

Patient-Derived Xenografts (PDXs) are, so far, the best preclinical model to validate targets and predictors of response to therapy. While subcutaneous implantation very rarely allows metastatic dissemination, orthotopic implantation (Patient-Derived Orthotopic Xenograft—PDOX) increases metastatic capability. Using a modified tool to analyze model validity, we performed a systematic review of Embase, PubMed, and Web of Science up to December 2018 to identify all original publications describing gastric cancer (GC) PDOXs. We identified ten studies of PDOX model validation from January 1981 to December 2018 that fulfilled the inclusion and exclusion criteria. Most models (70%) were derived from human GC cell lines rather than tissue fragments. In 90% of studies, the implantation was performed in the subserosal layer. Tumour engraftment rate ranged from 0 to 100%, despite the technique. Metastases were observed in 40% of PDOX models implanted into the subserosal layer, employing either cell suspension or cell line-derived tumour fragments. According to our modified model validity tool, half of the studies were defined as unclear because one or more validation criteria were not reported. Available GC PDOX models are not adequate according to our model validity tool. There is no demonstration that the submucosal site is more effective than the subserosal layer, and that tissue fragments are better than cell suspensions for successful engraftment and metastatic spread. Further studies should strictly employ model validity tools and large samples with orthotopic implant sites mirroring as much as possible the donor tumour characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  CAS  PubMed  Google Scholar 

  2. Bang Y-J, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697. https://doi.org/10.1016/S0140-6736(10)61121-X

    Article  CAS  PubMed  Google Scholar 

  3. Fuchs CS, Tomasek J, Yong CJ et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet (London, England) 383:31–39. https://doi.org/10.1016/S0140-6736(13)61719-5

    Article  CAS  Google Scholar 

  4. Kamath SD, Kalyan A, Benson AB (2018) Pembrolizumab for the treatment of gastric cancer. Expert Rev Anticancer Ther 18:1177–1187. https://doi.org/10.1080/14737140.2018.1526084

    Article  CAS  PubMed  Google Scholar 

  5. Bertotti A, Bracco C, Girolami F et al (2010) Inhibition of Src impairs the growth of met-addicted gastric tumors. Clin Cancer Res 16:3933–3943. https://doi.org/10.1158/1078-0432.CCR-10-0106

    Article  CAS  PubMed  Google Scholar 

  6. Conte N, Mason JC, Halmagyi C et al (2019) PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res 47:D1073–D1079. https://doi.org/10.1093/nar/gky984

    Article  CAS  PubMed  Google Scholar 

  7. Giovanella BC, Yim SO, Stehlin JS, Williams LJ (1972) Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 48:1531–1533

    CAS  PubMed  Google Scholar 

  8. Shimosato Y, Kameya T, Nagai K et al (1976) Transplantation of human tumors in nude mice. J Natl Cancer Inst 56:1251–1260

    Article  CAS  PubMed  Google Scholar 

  9. Sharkey FE, Fogh J (1984) Considerations in the use of nude mice for cancer research. Cancer Metastasis Rev 3:341–360

    Article  CAS  PubMed  Google Scholar 

  10. Sharkey FE, Fogh J (1979) Metastasis of human tumors in athymic nude mice. Int J cancer 24:733–738

    Article  CAS  PubMed  Google Scholar 

  11. Kyriazis AP, DiPersio L, Michael GJ et al (1978) Growth patterns and metastatic behavior of human tumors growing in athymic mice. Cancer Res 38:3186–3190

    CAS  PubMed  Google Scholar 

  12. Fidler IJ (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5:29–49

    Article  CAS  PubMed  Google Scholar 

  13. Fu X, Hoffman RM (1992) Human RT-4 bladder carcinoma is highly metastatic in nude mice and comparable to ras-H-transformed RT-4 when orthotopically onplanted as histologically intact tissue. Int J cancer 51:989–991

    Article  CAS  PubMed  Google Scholar 

  14. Gutman M, Fidler IJ (1995) Biology of human colon cancer metastasis. World J Surg 19:226–234

    Article  CAS  PubMed  Google Scholar 

  15. Killion JJ, Radinsky R, Fidler IJ (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17:279–284

    Article  PubMed  Google Scholar 

  16. Kobaek-Larsen M, Thorup I, Diederichsen A et al (2000) Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans. Comp Med 50:16–26

    CAS  PubMed  Google Scholar 

  17. Capellá G, Farré L, Villanueva A et al (1999) Orthotopic models of human pancreatic cancer. Ann NY Acad Sci 880:103–109

    Article  PubMed  Google Scholar 

  18. Chen Y-L, Wei P-K, Xu L et al (2005) Nude mouse model of human gastric carcinoma metastasis constructed by orthotopic transplantation using organism glue paste technique. Ai Zheng 24:246–248

    PubMed  Google Scholar 

  19. Bhargava S, Hotz B, Buhr HJ, Hotz HG (2009) An orthotopic nude mouse model for preclinical research of gastric cardia cancer. Int J Colorectal Dis 24:31–39. https://doi.org/10.1007/s00384-008-0584-z

    Article  PubMed  Google Scholar 

  20. Yang B, Tuo S, Tuo CW, Zhang N, Liu QZ (2010) A liver-metastatic model of human primary gastric lymphoma in nude mice orthotopically constructed by using histologically intact patient specimens. Chin J Cancer 29:579–584

    Article  CAS  PubMed  Google Scholar 

  21. Fujihara T, Sawada T, Hirakawa K et al (1998) Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clin Exp Metastasis 16:389–398

    Article  CAS  PubMed  Google Scholar 

  22. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane Handbook for Systematic Reviews of Interventions, 2nd edn. Chichester (UK)

  23. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  24. Collins AT, Lang SH (2018) A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ 6:e5981. https://doi.org/10.7717/peerj.5981

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hooijmans CR, Rovers MM, de Vries RBM et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collins A, Ross J, Lang SH (2017) A systematic review of the asymmetric inheritance of cellular organelles in eukaryotes: a critique of basic science validity and imprecision. PLoS ONE 12:e0178645. https://doi.org/10.1371/journal.pone.0178645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kilkenny C, Browne WJ, Cuthill IC et al (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthr Cartil 20:256–260. https://doi.org/10.1016/j.joca.2012.02.010

    Article  CAS  Google Scholar 

  28. Furukawa T, Fu X, Kubota T, Watanabe M, Kitajima M, Hoffman RM (1993) Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res 53:1204–1208

    CAS  PubMed  Google Scholar 

  29. Cui JH, Kruger U, Vogel I et al (1998) Intact tissue of gastrointestinal cancer specimen orthotopically transplanted into nude mice. Hepatogastroenterology 45:2087–2096

    CAS  PubMed  Google Scholar 

  30. Illert B, Otto C, Thiede A, Timmermann W (2003) Detection of disseminated tumor cells in nude mice with human gastric cancer. Clin Exp Metastasis 20:549–554. https://doi.org/10.1023/A:1025862800798

    Article  PubMed  Google Scholar 

  31. Illert B, Otto C, Braendlein S, Thiede A, Timmermann W (2003) Optimization of a metastasizing human gastric cancer model in nude mice. Microsurgery 23:508–512. https://doi.org/10.1002/micr.10184

    Article  PubMed  Google Scholar 

  32. Jones-Bolin S, Ruggeri B, Jones‐Bolin S et al (2007) Orthotopic models of human gastric carcinoma in nude mice: applications for study of tumor growth and progression. Curr Protoc Pharmacol Chapter 14. https://doi.org/10.1002/0471141755.ph1404s37

    Article  Google Scholar 

  33. Li Y, Li B, Zhang Y, Xiang CP, Li YY, Wu XL (2011) Serial observations on an orthotopic gastric cancer model constructed using improved implantation technique. World J Gastroenterol 17:1442–1447. https://doi.org/10.3748/wjg.v17.i11.1442

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Li B, Xiang CP, Zhang Y, Li YY, Wu XL (2012) Characterization of gastric cancer models from different cell lines orthotopically constructed using improved implantation techniques. World J Gastroenterol 18:136–143. https://doi.org/10.3748/wjg.v18.i2.136

    Article  PubMed  PubMed Central  Google Scholar 

  35. Busuttil RA, Liu DS, Di Costanzo N et al (2018) An orthotopic mouse model of gastric cancer invasion and metastasis. Sci Rep 8:825. https://doi.org/10.1038/s41598-017-19025-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng HY, Zhang Y, Liu HJ et al (2018) Characterization of an orthotopic gastric cancer mouse model with lymph node and organ metastases using bioluminescence imaging. Oncol Lett 16:5179–5185. https://doi.org/10.3892/ol.2018.9313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We kindly thank Dr. Carlotta Sacerdote for having served as Biostatistic and Dr. James M. Hughes for his English language revision.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Corresponding authors

Correspondence to Rossella Reddavid or Maurizio Degiuli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. No financial support.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

It was not necessary, because it is a systematic review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript has been kindly revised by Dr. James Hughes, a native English speaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddavid, R., Corso, S., Moya-Rull, D. et al. Patient-Derived Orthotopic Xenograft models in gastric cancer: a systematic review. Updates Surg 72, 951–966 (2020). https://doi.org/10.1007/s13304-020-00751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13304-020-00751-4

Keywords

Navigation