Skip to main content
Log in

TASK, TREK & Co.: a mutable potassium channel family for diverse tasks in the brain

  • Review article
  • Published:
e-Neuroforum

Abstract

Discovered during the 1990s and in the beginning regarded as passive membrane pores, the family of two-pore domain potassium (K2P)-channels initially received only little attention. Today the view on this channel family comprising 15 ubiquitously expressed members in mammals has greatly changed. K2P-channels carry potassium outward current that counterbalances membrane depolarization and stabilizes the resting membrane potential. Thereby they are important regulators for the excitability and the firing behaviour especially in neurons. The long list of modulating mechanisms underlines the channels’ relevance. K2P-channels in the thalamus contribute to the regulation of the sleep-wake cycle. They also mediate the effect of volatile anaesthetics by supporting the thalamic activity mode that is also typical for sleep. This review summarizes our knowledge about K2P-channel physiology in the brain, provides an idea of the role of these channels in neurological diseases and lists open questions as well as technical challenges in K2P-channel research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldstein S, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nature reviews. Neuroscience 2:175–184

    CAS  PubMed  Google Scholar 

  2. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K + channel with a novel structure. EMBO J 15:1004–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Ren Physiol 279:801

    Google Scholar 

  4. Enyedi P, Czirják G (2010) Molecular background of leak K + currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  5. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lesage F (2003) Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K + channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405

    Article  CAS  PubMed  Google Scholar 

  8. Maingret F, Lauritzen I, Patel A, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Talley E, Solorzano G, Lei Q, Kim D, Bayliss D (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci Off J Soc Neurosci 21:7491–7505

    CAS  Google Scholar 

  11. Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T (2014) The role of two-pore-domain background K (K) channels in the thalamus. Pflugers Arch 467:895–905

  12. Sherman S, Guillery R (2006) Exploring the thalamus and its role in cortical function, 2nd edn. The MIT Press, Cambridge

    Google Scholar 

  13. Llinás R, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95:3297–3308

    Article  PubMed  Google Scholar 

  14. Pape HC (2005) Der Thalamus: Das Tor zum Bewußtsein. Neuroforum 2/05:44–54

  15. Llinás R, Ribary U, Jeanmonod D, Kronberg E, Mitra P (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Nat Acad Sci USA 96:15222–15227

    Article  PubMed Central  PubMed  Google Scholar 

  16. Llinás R, Urbano F, Leznik E, Ramírez R, van Marle H (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–333

    Article  PubMed  Google Scholar 

  17. Budde T, Mager R, Pape H-C (1992) Different types of potassium outward current in relay neurons acutely isolated from the rat lateral geniculate nucleus. Eur J Neurosci 4:708–722

    Article  PubMed  Google Scholar 

  18. Meuth S, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469

    CAS  PubMed  Google Scholar 

  19. Meuth S, Aller M, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape H-C, Wiendl H, Wisden W, Budde T (2006) The contribution of TWIK-related acid-sensitive K + -containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476

    Article  CAS  PubMed  Google Scholar 

  20. Meuth S, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape H-C, Budde T (2006) Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529

    Article  CAS  PubMed  Google Scholar 

  21. Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T (2015) Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K + channels in rat thalamocortical relay neurons. J Physiol 593(1):127–144

    Article  CAS  PubMed  Google Scholar 

  22. Budde T, Coulon P, Pawlowski M, Meuth P, Kanyshkova T, Japes A, Meuth S, Pape H-C (2008) Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane. Pflügers Archiv 456:1061–1073

    Article  CAS  PubMed  Google Scholar 

  23. Musset B, Meuth S, Liu G, Derst C, Wegner S, Pape H-C, Budde T, Preisig-Müller R, Daut J (2006) Effects of divalent cations and spermine on the K + channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572:639–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lindner M, Leitner M, Halaszovich C, Hammond G, Oliver D (2011) Probing the regulation of TASK potassium channels by PI4, 5P2 with switchable phosphoinositide phosphatases. J Physiol 589:3149–3162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bittner S, Budde T, Wiendl H, Meuth S (2010) From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol (Zurich, Switzerland) 20:999–1009

    Article  CAS  Google Scholar 

  26. Siemkowicz E, Hansen A (1981) Brain extracellular ion composition and EEG activity following 10 min ischemia in normo- and hyperglycemic rats. Stroke; J Cereb Circ 12:236–240

    Article  CAS  Google Scholar 

  27. Steinke W, Sacco RL, Mohr JP, Foulkes MA, Tatemichi TK, Wolf PA, Price TR, Hier DB (1992) Thalamic stroke. Presentation and prognosis of infarcts and hemorrhages. Arch Neurol 49:703–710

    Article  CAS  PubMed  Google Scholar 

  28. Ehling P, Göb E, Bittner S, Budde T, Ludwig A, Kleinschnitz C, Meuth S (2013) Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? Exp Transl Stroke Med 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  29. Meuth S, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss D, Budde T, Stoll G, Wiendl H (2009) The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 33:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth S (2010) Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Exp Transl Stroke Med 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bittner S, Meuth S, Göbel K, Melzer N, Herrmann A, Simon O, Weishaupt A, Budde T, Bayliss D, Bendszus M, Wiendl H (2009) TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132:2501–2516

    Article  PubMed Central  PubMed  Google Scholar 

  32. Deng PY, Lei S (2008) Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K + channels. Mol Cell Neurosci 39:273–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dey D, Eckle VS, Vitko I, Sullivan KA, Lasiecka ZM, Winckler B, Stornetta RL, Williamson JM, Kapur J, Perez-Reyes E (2014) A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia 55:203–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chatelain F, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Nat Acad Sci USA 109:5499–5504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ma L, Zhang X, Zhou M, Chen H (2012) Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 287:37145–37153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K + channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  37. Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik K, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K + channels. J Biol Chem 276:7302–7311

    Article  CAS  PubMed  Google Scholar 

  38. Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W (2014) The role of K channels in anaesthesia and sleep. Pflugers Arch 467:907–916

  39. Ries CR, Puil E (1999) Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795–1801

    CAS  PubMed  Google Scholar 

  40. Bichet D, Blin S, Feliciangeli S, Chatelain FC, Bobak N, Lesage F (2014) Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Arch 467:1121–1131

  41. Seifert G, Hüttmann K, Binder D, Hartmann C, Wyczynski A, Neusch C, Steinhäuser C (2009) Analysis of astroglial K + channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29:7474–7488

    Article  CAS  PubMed  Google Scholar 

  42. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40

    Article  CAS  PubMed  Google Scholar 

  43. Kim JE, Yeo SI, Ryu HJ, Chung CK, Kim MJ, Kang TC (2011) Changes in TWIK-related acid sensitive K + -1 and – 3 channel expressions from neurons to glia in the hippocampus of temporal lobe epilepsy patients and experimental animal model. Neurochem Res 36:2155–2168

    Article  CAS  PubMed  Google Scholar 

  44. Hawkins V, Butt A (2013) TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. Neurobiol Dis 55:87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Borsotto M, Veyssiere J, Moha Ou Maati H, Devader C, Mazella J, Heurteaux C (2015): Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol 172:771–784

  46. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1141

    Article  CAS  PubMed  Google Scholar 

  47. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8:e1000355

    Article  PubMed Central  PubMed  Google Scholar 

  48. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ (2014) A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat Commun 5:4377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  CAS  PubMed  Google Scholar 

  50. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K + ion channel. Science 335:436–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D (2014) Tandem pore domain halothane-inhibited K + channel subunits THIK1 and THIK2 assemble and form active channels. J Biol Chem 289:28202–28212

    Article  CAS  PubMed  Google Scholar 

  52. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Article  CAS  PubMed  Google Scholar 

  53. Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SA (2012) SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci Signal 5:ra84

    PubMed  Google Scholar 

  54. Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park JY (2014) A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 5:3227

    PubMed  Google Scholar 

  55. Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184

    Article  CAS  PubMed  Google Scholar 

  56. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bittner S, Ruck T, Schuhmann M, Herrmann A, Maati H, Bobak N, Göbel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape H-C, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla H-J, Budde T, Wiendl H, Meuth S (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19:1161–1165

    Article  CAS  PubMed  Google Scholar 

  58. Ma L, Zhang X, Chen H (2011) TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Sci Signal 4:ra37

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully thank Heike Blum for excellent graphical illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Ehling PhD.

Additional information

Note that a special issue on K2P-channels was published in Pflügers Archiv—European Journal of Physiology in May 2015. This issue is considerably based on contributions from members of the DFG research group “K2P-channels—from molecules to physiology and pathophysiology” (FOR1086).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehling, P., Bittner, S., Meuth, S. et al. TASK, TREK & Co.: a mutable potassium channel family for diverse tasks in the brain. e-Neuroforum 6, 29–37 (2015). https://doi.org/10.1007/s13295-015-0007-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-015-0007-x

Keywords

Navigation