Skip to main content
Log in

Linking soil variability with plant community composition along a mine-slope topographic gradient: Implications for restoration

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Soil heterogeneity generated during the topographic restoration of opencast coalmines determines important differences in vegetation dynamics. The relationship between soil and vegetation along a reclaimed mine slope was assessed. Two vegetation patches (grassland and shrubland) were distinguished and compared with the adjacent forest. Seven sampling transects (3:3:1, grassland:shrubland:forest) were implemented for soil and vegetation characterization. Eleven years after reclamation significant differences between the reference community and the reclaimed communities, and along the reclaimed mine slope, were found. A topographic gradient was observed in the vegetation distribution associated with water and organic matter content: Grassland patches occupy the upper parts of the mine slope to where easily oxidizable-carbon/total-carbon ratio increases and shrubland patches occupy the lower parts towards where water retention capacity increases. The plant species segregation along the mine-slope topographic gradient was related to stages of different maturity of vegetation and soil properties. Novel aspects in plant-soil systems understanding in reclaimed mine slopes were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. In Second international symposium on information theory, ed. D. Brillinger, J. Gani, and J. Hartigan, 267–281. Budapest: Akademiai Kiado. https://doi.org/10.1007/978-0-387-98135-2.

    Chapter  Google Scholar 

  • Alday, J.G., C. Martínez-Ruiz, R.H. Marrs, and F. Bravo. 2010. Influence of harvesting intensity on the floristic composition of natural Mediterranean maritime pine forest. Acta Oecologica 36: 349–356. https://doi.org/10.1016/j.actao.2010.03.001.

    Article  Google Scholar 

  • Alday, J.G., R.H. Marrs, and C. Martínez-Ruiz. 2012. Soil and vegetation development during early succession on restored coal wastes: A six-year permanent plot study. Plant and Soil 353: 305–320. https://doi.org/10.1007/s11104-011-1033-2.

    Article  CAS  Google Scholar 

  • Allen, S.E., H.M. Grimshaw, J.A. Parkinson, and C. Quarmby. 1974. Chemical analysis of ecological materials. Oxford: Blackwell.

    Google Scholar 

  • Barnhisel, R.I., J.L. Powell, and D.H. Hines. 1987. Changes in chemical and physical properties of two soils in the process of surface mining. Proceedings American Society for Surface Mining and Reclamation 17–19: 313–322. https://doi.org/10.21000/jasmr87010313.

    Article  Google Scholar 

  • Berga, S. 1988. Estudio preliminar de la escorrentía hídrica superficial en áreas restauradas de minería de carbón a cielo abierto. Teruel 86: 101–134.

    Google Scholar 

  • Bradshaw, A.D. 1983. The Reconstruction of Ecosystems. Journal of Applied Ecology 20: 1–17.

    Article  Google Scholar 

  • Chabrerie, O., K. Laval, P. Puget, S. Desaire, and D. Alard. 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology 24: 43–56. https://doi.org/10.1016/S0929-1393(03)00062-3.

    Article  Google Scholar 

  • Clark, F.E., and E.A. Paul. 1970. The microflora of grassland. Advances in Agronomy 22: 375–435.

    Article  CAS  Google Scholar 

  • Condron, L.M., and R.H. Newman. 1998. Chemical nature of soil organic matter under grassland and recently established forest. European Journal of Soil Science. https://doi.org/10.1046/j.1365-2389.1998.4940597.x.

    Article  Google Scholar 

  • De Kovel, C.G.F., A.J.E.M. Van Mierlo, Y.J.O. Wilms, and F. Berendse. 2000. Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecology 149: 43–50. https://doi.org/10.1023/A:1009898622773.

    Article  Google Scholar 

  • Del Moral, R., and L.R. Walker. 2007. Environmental disasters, natural recovery and human responses. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Espigares, T., L. Merino-Martín, M. Moreno-de Las Heras, and J.M. Nicolau. 2013. Intensity of ecohydrological interactions in reclaimed Mediterranean slopes: Effects of run-off redistribution on plant performance. Ecohydrology 6: 836–844. https://doi.org/10.1002/eco.1307.

    Article  Google Scholar 

  • Ettema, C.H., and D.A. Wardle. 2002. Spatial soil ecology. Trends in Ecology & Evolution 17: 177–183. https://doi.org/10.1016/S0169-5347(02)02496-5.

    Article  Google Scholar 

  • García, R., A. Moro, J.E. Pérez-Pinto, T. Pérez-Pinto, and A. Calleja. 1991. Composición botánica y producción de prados permanentes de montaña. Pastos 20–21: 19–49.

    Google Scholar 

  • González-Alday, J., R.H. Marrs, and C. Martínez-Ruiz. 2008. The influence of aspect on the early growth dynamics of hydroseeded species in coal reclamation areas. Applied Vegetation Science 11: 405–412. https://doi.org/10.3170/2008-7-18497.

    Article  Google Scholar 

  • Grigg, A.H. 2017. Hydrological response to bauxite mining and rehabilitation in the jarrah forest in south west Australia. Journal of Hydrology: Regional Studies 12: 150–164. https://doi.org/10.1016/j.ejrh.2017.05.008.

    Article  Google Scholar 

  • Hodkinson, I.D., S.J. Coulson, and N.R. Webb. 2003. Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard. Journal of Ecology 91: 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x.

    Article  Google Scholar 

  • Huisman, J., H. Olff, and L.F.M. Fresco. 1993. A hierarchical set of models for species response analysis. Journal of Vegetation Science 4: 37–46.

    Article  Google Scholar 

  • IRMC. 2013. Framework of action for coal mining and the mining regions in the period 2013–2018. Madrid: Ministerio de Industria Energía y Turismo.

    Google Scholar 

  • Jansen, F., and J. Oksanen. 2013. How to model species responses along ecological gradients—Huisman-Olff-Fresco models revisited. Journal of Vegetation Science 24: 1108–1117. https://doi.org/10.1111/jvs.12050.

    Article  Google Scholar 

  • Johnson, J.B., and K.S. Omland. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19: 101–108. https://doi.org/10.1016/j.tree.2003.10.013.

    Article  Google Scholar 

  • Knops, J.M.H., and D. Tilman. 2000. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81: 88–98. https://doi.org/10.1890/0012-9658(2000)081%5b0088:DOSNAC%5d2.0.CO;2.

    Article  Google Scholar 

  • Koch, J.M., and R.J. Hobbs. 2007. Synthesis: Is Alcoa successfully restoring a jarrah forest ecosystem after bauxite mining in Western Australia? Restoration Ecology 15: 137–144. https://doi.org/10.1111/j.1526-100X.2007.00301.x.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre. 2003. Numerical ecology. Developments in environmental modelling. vol. 24. Amsterdam: Elsevier. https://doi.org/10.1017/cbo9781107415324.004.

  • López-Marcos, D. 2012. Influence of soil heterogeneity and topography in the composition of plant species on coal mining dumps of northern Spain. Final Grade Thesis. Spain: Valladolid University (in Spanish).

  • MAPA. 1994. Tomo III. In Métodos oficiales de Análisis. Madrid: Ministerio de Agricultura, Pesca y Alimentación (in Spanish).

  • Martínez-Ruiz, C., and R.H. Marrs. 2007. Some factors affecting successional change on uranium mine wastes: Insights for ecological restoration. Applied Vegetation Science 10: 333–342. https://doi.org/10.1111/j.1654-109X.2007.tb00432.x.

    Article  Google Scholar 

  • Matlack, G.R. 2009. Long-term changes in soils of second-growth forest following abandonment from agriculture. Journal of Biogeography 36: 2066–2075. https://doi.org/10.1111/j.1365-2699.2009.02155.x.

    Article  Google Scholar 

  • Merino-Martín, L., D.D. Breshears, M. Moreno-de Las Heras, J.C. Villegas, S. Pérez-Domingo, T. Espigares, and J.M. Nicolau. 2012. Ecohydrological source–sink interrelationships between vegetation patches and soil hydrological properties along a disturbance gradient reveal a restoration threshold. Restoration Ecology 20: 360–368. https://doi.org/10.1111/j.1526-100x.2011.00776.x.

    Article  Google Scholar 

  • Milder, A.I., B. Fernandez-Santos, and C. Martínez-Ruiz. 2013. Colonization Patterns of woody species on lands mined for coal in Spain: Preliminary insights for forest expansion. Land Degradation and Development 24: 39–46.

    Article  Google Scholar 

  • Moreno-de las Heras, M., J.M. Nicolau, and T. Espigares. 2008. Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecological Engineering 34: 168–178. https://doi.org/10.1016/j.ecoleng.2008.07.017.

    Article  Google Scholar 

  • Navarro-Andrés, F., and C.J. Valle-Gutiérrez. 1987. Castilla y León. In La vegetación de España, ed. M.Y. Peinado Lorca and S. Rivas Martínez, 117–161. Madrid: Aula abierta (in Spanish).

  • Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. In Methods of soil analysis, ed. A.L. Page, R.H. Miller, and D.R. Keeney, 403–427. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Pallavicini, Y., J.G. Alday, and C. Martínez-Ruiz. 2015. Factors affecting herbaceous richness and biomass accumulation patterns of reclaimed coal mines. Land Degradation and Development 26: 211–217. https://doi.org/10.1002/ldr.2198.

    Article  Google Scholar 

  • Pastor, J., S. Oliver, and A. García. 1992. Relaciones ecológicas entre especies pascícolas y factores edáficos en áreas degradadas de la submeseta sur. Pastos XXII: 21–35.

    Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R-Core-Team. 2018. Package “nlme.” nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-137, https://CRAN.R-project.org/package=nlme.

  • Pinheiro, J., and D. Bates. 2000. Mixed-effects models in S and S-Plus. New York: Springer.

    Book  Google Scholar 

  • R-Core Team. 2015. R Studio: Integrated development environment for R. Boston: R Foundation for Statistical Computing.

    Google Scholar 

  • Richards, A. 2005. Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology 86: 2805–2814. https://doi.org/10.1890/05-0074.

    Article  Google Scholar 

  • Schadek, U., B. Strauss, R. Biedermann, and M. Kleyer. 2009. Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosystems 12: 115–126. https://doi.org/10.1007/s11252-008-0072-9.

    Article  Google Scholar 

  • Soil-Survey-Staff. 2014. Keys to soil taxonomy, 12th ed. Washington, DC: USDA-Natural Resources Conservation Service. https://doi.org/10.1109/TIP.2005.854494.

    Book  Google Scholar 

  • Sokal, R.R., and F.J. Rohlf. 1995. Biometry: The principles and practice of statistics. In Biological research. New York: W.H. Freeman and Co.

  • Steen, E. 1999. Sustainable development in dry climates: The Mediterranean area. Ambio 28: 367–371.

    Google Scholar 

  • Ter-Braak, C.J.F., and P. Similauer. 2002. CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (Version 4.5). Ithaca, NY: Microcomputer Power.

  • Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Monographs in population biology. vol. 26. Princeton: Princeton University Press.

  • Turrión, M.B., O. López, F. Lafuente, R. Mulas, C. Ruipérez, and A. Puyo. 2007. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Science of the Total Environment 378: 195–198. https://doi.org/10.1016/j.scitotenv.2007.01.037.

    Article  CAS  Google Scholar 

  • Walkley, A. 1947. A critical examination of rapid method for determining organic carbon in soils. Soil Science 63: 251–254. https://doi.org/10.1097/00010694-194704000-00001.

    Article  CAS  Google Scholar 

  • White, P.S., and A. Jentsch. 2004. Disturbance, succession, and community assembly in terrestrial plant communities. In Assembly rules and restoration ecology, ed. V.M. Temperton, R.J. Hobbs, T. Nuttle, and S. Halle, 342–366. Washington, DC: Island Press.

    Google Scholar 

Download references

Acknowledgements

We thank ‘UMINSA’ for the information on their restoration procedures and permission to work in their mines and AEMET (Meteorological Spanish Agency) for providing meteorological data. We also thank Luis Alfonso Ramos Calvo and Elena López Laureiro for fieldwork assistance, Carmen Blanco de Castro and Juan Carlos Arranz Moral for helping in the laboratory analyses, Josu G. Alday for statistics assistance, and Juan Manuel Diez Clivillé and Pilar Zaldívar for his assistance with English. We also thank the editor in chief, Bo Söderström, the associate editor, Graciela Rusch, and two anonymous reviewers for their valuable comments to improve the manuscript. This study was partially supported by the Project VA042A10-2 and VA035G18 from ‘Junta de Castilla y León’ to C. Martínez-Ruiz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne López-Marcos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Marcos, D., Turrión, M.B. & Martínez-Ruiz, C. Linking soil variability with plant community composition along a mine-slope topographic gradient: Implications for restoration. Ambio 49, 337–349 (2020). https://doi.org/10.1007/s13280-019-01193-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01193-y

Keywords

Navigation