Skip to main content
Log in

Linking Cellulose Fiber Sediment Methyl Mercury Levels to Organic Matter Decay and Major Element Composition

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment–water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Benoit, J.M., C.C. Gilmour, R.P. Mason, G.S. Riedel, and G.F. Riedel. 1998. Behavior of mercury in the Patuxent River estuary. Biogeochemistry 40: 249–265. doi:10.1023/A:1005905700864.

    Article  CAS  Google Scholar 

  • Berg, I.A., D. Kockelkorn, W.H. Ramos-Vera, R.F. Say, J. Zarzycki, M. Hügler, B.E. Alber, and G. Fuchs. 2010. Autotrophic carbon fixation in archaea. Nature Reviews/Microbiology 8: 447–460. doi:10.1038/nrmicro2365.

    CAS  Google Scholar 

  • Bertics, V.J., J.A. Sohm, T. Treude, C.-E.T. Chow, D.G. Capone, J.A. Fuhrman, and W. Ziebis. 2010. Burrowing deeper into benthic nitrogen cycling: The impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Marine Ecology Progress Series 409: 1–15. doi:10.3354/meps08639.

    Article  CAS  Google Scholar 

  • Bloom, N.S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49: 1010–1017. doi:10.1139/f92-113.

    Article  CAS  Google Scholar 

  • Cleveland, C.C., and D. Liptzin. 2007. C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85: 235–252. doi:10.1007/s10533-007-9132-0.

    Article  Google Scholar 

  • Compeau, G.C., and R. Bartha. 1985. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.

    CAS  Google Scholar 

  • Elser, J.J., W.F. Fagan, R.F. Denno, D.R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandl, S.S. Kilham, et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580. doi:10.1038/35046058.

    Article  CAS  Google Scholar 

  • Fathi, M., J.J. Ridal, D.R.S. Lean, and J.M. Blais. 2013. Do wood fibers from pulp mill affect the distribution of total and methyl mercury in river sediments? Journal of Great Lakes Research 39: 66–73. doi:10.1016/j.jglr.2012.12.018.

    Article  CAS  Google Scholar 

  • Fenchel, T., and B.J. Finlay. 1995. Ecology and evolution in anoxic worlds. New York: Oxford University Press.

    Google Scholar 

  • Fleming, E.J., E.E. Mack, P.G. Green, and D.C. Nelson. 2006. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology 72: 457–464. doi:10.1128/AEM.72.1.457-464.2006.

    Article  CAS  Google Scholar 

  • Fontaine, S., S. Barot, P. Barré, N. Bdioui, B. Mary, and C. Rumpel. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450: 277–280. doi:10.1038/nature06275.

    Article  CAS  Google Scholar 

  • Gavis, J., and J.F. Ferguson. 1972. The cycling of mercury through the environment. Water Research 6: 989–1008.

    Article  CAS  Google Scholar 

  • Handley, K.M., N.C. VerBerkmoes, C.I. Steefel, K.H. Williams, I. Sharon, C.S. Miller, K.R. Frischkorn, K. Chourey, et al. 2013. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. The ISME Journal 7: 800–816. doi:10.1038/ismej.2012.148.

    Article  CAS  Google Scholar 

  • Hofsten, B.v., and N. Edberg. 1972. Estimating the rate of degradation of cellulose fibers in water. Oikos 23: 29–34.

    Article  Google Scholar 

  • Hultgren, P. 2000. Maringeologisk undersökning av Nötöfjärden, Oskarshamns kommun. Department of Marine Geology. Göteborg University (in Swedish).

  • Jonsson, P., J. Eckhéll, and P. Larsson. 2000. PCB and DDT in laminated sediments from offshore and archipelago areas of the NW Baltic Sea. AMBIO 29: 268–276. doi:10.1579/044-7447-29.4.268.

    Google Scholar 

  • Naturvårdsverket. 1995. Branschkartläggningen: en översiktlig kartläggning av efterbehandlingsbehovet i Sverige. Rapport 4393. Naturvårdsverkets förlag. ISBN 91-620-4393-5 (in Swedish).

  • Olsson, S., J. Regnéll, A. Persson, and P. Sandgren. 1997. Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. Journal of Paleolimnology 17: 275–294. doi:10.1023/A:1007967832177.

    Article  Google Scholar 

  • Pan-Hou, H.S., and N. Imura. 1982. Involvement of mercury methylation in microbial mercury detoxification. Archives of Microbiology 131: 176–177.

    Article  CAS  Google Scholar 

  • Pak, K.-R., and R. Bartha. 1998. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Applied and Environmental Microbiology 64: 1987–1990.

    CAS  Google Scholar 

  • Parks, J.M., A. Johs, M. Podar, R. Bridou, R.A. Hurt, S.D. Smith, S.J. Tomanicek, Y. Qian, et al. 2013. The genetic basis for bacterial mercury methylation. Science 339: 1332–1335. doi:10.1126/science.1230667.

    Article  CAS  Google Scholar 

  • Ramlal, P.S., C.A. Kelly, J.W.M. Rudd, and A. Furutani. 1993. Sites of methyl mercury production in remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 50: 972–979. doi:10.1139/f93-112.

    Article  CAS  Google Scholar 

  • Regnell, O., and T. Hammar. 2004. Coupling of methyl and total mercury in a minerotrophic peat bog in southeastern Sweden. Canadian Journal of Fisheries and Aquatic Sciences 61: 2014–2023. doi:10.1139/F04-143.

    Article  CAS  Google Scholar 

  • Rozan, T.F., M. Taillefert, R.E. Trouwborst, B.T. Glazer, S. Ma, J. Herszage, L.M. Valdes, K.S. Price, et al. 2002. Iron–sulfur–phosphorus cycling in the sediment of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354. doi:10.4319/lo.2002.47.5.1346.

    Article  CAS  Google Scholar 

  • Skyllberg, U. 2008. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetlands soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. Journal of Geophysical Research 113: G00C03. doi:10.1029/2008JG000745.

    Article  Google Scholar 

  • Sunderland, E.M., and G.L. Chmura. 2000. An inventory of historical mercury emissions in Maritime Canada: Implications for present and future contamination. The Science of the Total Environment 256: 39–57. doi:http://www.ncbi.nlm.nih.gov/pubmed/10898386.

    Article  CAS  Google Scholar 

  • Travnikov, O., I. Ilyin, O. Rozovskaya, M. Varygina, W. Aas, H.T. Uggerud, K. Mareckova, and R. Wankmueller. 2012. Long-term changes of heavy metal transboundary pollution of the environment (1990–2010). EMEP contribution to the revision of the heavy metal protocol. EMEP Status Report 2/2012.

  • Ullrich, S.M., T.W. Tanton, and S.A. Abdrashitova. 2001. Mercury in the environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology 31: 241–293. doi:10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • Watras, C.J., and N.S. Bloom. 1992. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography 37: 1313–1318. doi:10.4319/lo.1992.37.6.1313.

    Article  Google Scholar 

  • Woyke, T., H. Teeling, N.N. Ivanova, M. Huntemann, M. Richter, F.O. Gloeckner, D. Boffelli, I.J. Anderson, et al. 2006. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950–955. doi:10.1038/nature05192.

    Article  CAS  Google Scholar 

  • Yu, R.-Q., J.R. Reinfelder, M.E. Hines, and T. Barkay. 2013. Mercury methylation by the methanogen Methanospirillum hungatei. Applied and Environmental Microbiology 79: 6325–6330. doi:10.1128/AEM.01556-13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was part of a project initiated and run by the Kalmar County Administration and financed by the Swedish EPA. We thank the project manager Anna Aleljung and also Tommy Hammar, Kalmar County Administration and Bo Troedsson, Eman Catchment Management Association for taking part in the planning of the project and for providing equipment for field measurement and field sampling. As always, the mercury laboratory at IVL, Gothenburg determined mercury and methyl mercury with high accuracy and precision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Regnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regnell, O., Elert, M., Höglund, L.O. et al. Linking Cellulose Fiber Sediment Methyl Mercury Levels to Organic Matter Decay and Major Element Composition. AMBIO 43, 878–890 (2014). https://doi.org/10.1007/s13280-013-0487-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-013-0487-2

Keywords

Navigation