Skip to main content

Advertisement

Log in

Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene

  • Review
  • Published:
Tumor Biology

Abstract

Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5–10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case–control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Wang B, Zhang S, Yue K, Wang X-D. The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer. 2013;32:614–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Caballero M, Grau JJ, Blanch JL, Domingo-Domenech J, Auge JM, Jimenez W, et al. Serum vascular endothelial growth factor as a predictive factor in metronomic (weekly) paclitaxel treatment for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2007;133:1143–8.

    Article  PubMed  Google Scholar 

  4. Sasaki T, Moles DR, Imai Y, Speight PM. Clinico-pathological features of squamous cell carcinoma of the oral cavity in patients <40 years of age. J Oral Pathol Med. 2005;34:129–33. doi:10.1111/j.1600-0714.2004.00291.x.

    Article  CAS  PubMed  Google Scholar 

  5. Kuriakose M, Sankaranarayanan M, Nair MK, Cherian T, Sugar AW, Scully C, et al. Comparison of oral squamous cell carcinoma in younger and older patients in India. Eur J Cancer B Oral Oncol. 1992;28B:113–20.

    Article  CAS  PubMed  Google Scholar 

  6. Petti S. Lifestyle risk factors for oral cancer. Oral Oncol. 2009;45:340–50.

    Article  PubMed  Google Scholar 

  7. Smith EM, Hoffman HT, Summersgill KS, Kirchner HL, Turek LP, Haugen TH. Human papillomavirus and risk of oral cancer. Laryngoscope. 1998;108:1098–103.

    Article  CAS  PubMed  Google Scholar 

  8. Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004;19:251–62.

    Article  CAS  PubMed  Google Scholar 

  9. D' Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 2015;51:12:1061-68

  10. Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol. 2012;8:1407–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rai R, Kulkarni V, Saranath D. Genome wide instability scanning in chewing-tobacco associated oral cancer using inter simple sequence repeat PCR. Oral Oncol. 2004;40:1033–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bhatnagar R, Dabholkar J, Saranath D. Genome-wide disease association study in chewing tobacco associated oral cancers. Oral Oncol. 2012;48:831–5.

    Article  PubMed  Google Scholar 

  13. The International HapMap Project. 2003;426:789–96.

  14. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  CAS  PubMed  Google Scholar 

  15. Chien MH, Yang JS, Chu YH, Lin CH, Wei LH, Yang SF, et al. Impacts of CA9 gene polymorphisms and environmental factors on oral-cancer susceptibility and clinicopathologic characteristics in Taiwan. PLoS One. 2012;7:5–12.

    Google Scholar 

  16. Ignatova Z, Martínez-Pérez I, Zimmermann K-H. DNA computing models. Springer Science & Business Media. 2008.

  17. Bau DT, Chang CH, Tsai MH, Chiu CF, Tsou YA, Wang RF, et al. Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope. 2010;120:2417–22.

    Article  CAS  PubMed  Google Scholar 

  18. Murali A, Nalinakumari KR, Thomas S, Kannan S. Association of single nucleotide polymorphisms in cell cycle regulatory genes with oral cancer susceptibility. Br J Oral Maxillofac Surg. 2014;52:652–8.

    Article  PubMed  Google Scholar 

  19. Gaur P, Mittal M, Mohanti BK, Das SN. Functional genetic variants of TGF-β1 and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Oncol. 2011;47:1117–21.

    Article  CAS  PubMed  Google Scholar 

  20. Bau DT, Tsai CW, Lin CC, Tsai RY, Tsai MH. Association of alpha B-crystallin genotypes with oral cancer susceptibility, survival, and recurrence in Taiwan. PLoS One. 2011;6:3–7.

    Article  Google Scholar 

  21. Ma L, Chen J, Song X, Yuan H, Wang Y, Wu Y, et al. Evidence that the genetic polymorphism rs1412115 on chromosome 10 is associated with risk for oral squamous cell carcinoma. Gene. 2015;560:137–9.

    Article  CAS  PubMed  Google Scholar 

  22. Weng C-J, Chen M-K, Lin C-W, Chung T-T, Yang S-F. Single nucleotide polymorphisms and haplotypes of MMP-14 are associated with the risk and pathological development of oral cancer. Ann Surg Oncol. 2012;19(Suppl 3):S319–27.

    Article  PubMed  Google Scholar 

  23. Li L. Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma. Exp Ther Med. 2013:171–8.

  24. Chung YT, Hsieh LL, Chen IH, Liao CT, Liou SH, Chi CW, et al. Sulfotransferase 1A1 haplotypes associated with oral squamous cell carcinoma susceptibility in male Taiwanese. Carcinogenesis. 2009;30:286–94.

    Article  CAS  PubMed  Google Scholar 

  25. Chou Y-E, Hsieh M-J, Hsin C-H, Chiang W-L, Lai Y-C, Lee Y-H, et al. CD44 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. PLoS One. 2014;9:e93692.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin CW, Chuang CY, Tang CH, Chang JL, Lee LM, Lee WJ, et al. Combined effects of ICAM-1 single-nucleotide polymorphisms and environmental carcinogens on oral cancer susceptibility and clinicopathologic development. PLoS One. 2013;8:1–8.

    Google Scholar 

  27. Gaur P, Mittal M, Mohanti BK, Das SN. Functional variants of IL4 and IL6 genes and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Dis. 2011;17:720–6.

    Article  CAS  PubMed  Google Scholar 

  28. Li N, Zhang C, Chen Z, Bai L, Nie M, Zhou B, et al. Interleukin 17A and interleukin 17F polymorphisms are associated with oral squamous cell carcinoma susceptibility in a Chinese population. J Oral Maxillofac Surg. 2015;73:267–73.

    Article  PubMed  Google Scholar 

  29. Chien M-H, Hsin C-H, Chou LS-S, Chung T-T, Lin C-H, Weng M-S, et al. Interleukin-23 receptor polymorphism as a risk factor for oral cancer susceptibility. Head Neck. 2012;34:551–6.

    Article  PubMed  Google Scholar 

  30. Lakhanpal M, Yadav DS, Devi TR, Singh LC, Singh KJ, Latha SP, et al. Association of interleukin-1β -511 C/T polymorphism with tobacco-associated cancer in Northeast India: a study on oral and gastric cancer. Cancer Genet. 2014;207:1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Singh PK, Ahmad MK, Kumar V, Hussain SR, Gupta R, Jain A, et al. Effects of interleukin-18 promoter (C607A and G137C) gene polymorphisms and their association with oral squamous cell carcinoma (OSCC) in northern India. Tumor Biol. 2014;35:12275–84.

    Article  CAS  Google Scholar 

  32. Su S, Chien M, Lin C, Chen M, Yang S. RAGE gene polymorphism and environmental factor in the risk of oral cancer. J Dent Res. 2015;94:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teng Y-H, Liu T-H, Tseng H-C, Chung T-T, Yeh C-M, Li Y-C, et al. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck. 2009;31:1282–8.

    Article  PubMed  Google Scholar 

  34. Multani S, Pradhan S, Saranath D. Gene polymorphisms and oral cancer risk in tobacco habitués. Tumour Biol. 2015.

  35. Jha R, Gaur P, Sharma SC, Das SN. Single nucleotide polymorphism in hMLH1 promoter and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Gene. 2013;526:223–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Lin L, Xu H, Li T, Zhou Y, Dan H, et al. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han. Population. 2015:45–50.

  37. Weng CJ, Hsieh YH, Chen MK, Tsai CM, Lin CW, Yang SF. Survivin SNP-carcinogen interactions in oral cancer. J Dent Res. 2012;91:358–63.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Hadyan KS, Al-Harbi NM, Al-Qahtani SS, Alsbeih GA. Involvement of single-nucleotide polymorphisms in predisposition to head and neck cancer in Saudi Arabia. Genet Test Mol Biomarkers. 2012;16:95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrade Filho PA, Letra A, Cramer A, Prasad JL, Garlet GP, Vieira AR, et al. Insights from studies with oral cleft genes suggest associations between WNT-pathway genes and risk of oral cancer. J Dent Res. 2011;90:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu H, Yang Y, Shieh T, Chen C. TGF-β1 and IL-10 single nucleotide polymorphisms as risk factors for oral cancer in Taiwanese. Kaohsiung J Med Sci. 2014:1–7.

  41. Anantharaman D, Chaubal PM, Bhisey RA, Mahimkar MB. Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. 2007;28:1455–62.

  42. Anantharaman D, Samant TA, Sen S, Mahimkar MB. Polymorphisms in tobacco metabolism and DNA repair genes modulate oral precancer and cancer risk. Oral Oncol. 2011;47:866–72.

    Article  CAS  PubMed  Google Scholar 

  43. Shukla D, Kale AD, Hallikerimath S, Vivekanandhan S, Venkatakanthaiah Y. Genetic polymorphism of drug metabolizing enzymes (GSTM1 and CYP1A1) as risk factors for oral premalignant lesions and oral cancer. Biomed Pap. 2012;156:253–9.

    Article  CAS  Google Scholar 

  44. Balaji L, Singh KB, Bhaskar LVKS. CYP1A1 genotypes and haplotypes and risk of oral cancer: a case-control study in South Indians. Genet Mol Biol. 2012;35:407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh R, Haridas N, Shah F, Patel J, Shukla S, Patel P. Gene polymorphisms, tobacco exposure and oral cancer susceptibility: a study from Gujarat, West India. Oral Dis. 2014;20:84–93.

    Article  CAS  PubMed  Google Scholar 

  46. Atoh TK, Aneko SK, Ohshi KK, Unaka MM, Itagawa KK, Unugita NK, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and oral cavity. Cancer. 1999;609:606–9.

  47. Sato M, Sato T, Izumo T. Genetic polymorphism of drug-metabolizing enzymes and susceptibility to oral. Cancer. 1999;20:1927–31.

    CAS  Google Scholar 

  48. Tanimoto K, Hayashi S, Yoshiga K, Ichikawa T. Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol. 1999;35:191–6.

    Article  CAS  PubMed  Google Scholar 

  49. Sato M, Sato T, Izumo T, Amagasa T. Genetically high susceptibility to oral squamous cell carcinoma in terms of combined genotyping of CYP1A1 and GSTM1 genes. Oral Oncol. 2000;36:267–71.

    Article  CAS  PubMed  Google Scholar 

  50. Amtha R, Ching CS, Zain R, Razak IA, Basuki B, Roeslan BO, et al. GSTM1, GSTT1 and CYP1A1 polymorphisms and risk of oral cancer: a case-control study in Jakarta, Indonesia. 2009;10:21–6.

  51. Kao S, Wu C, Lin S. Genetic polymorphism of cytochrome P4501A1 and susceptibility to oral squamous cell carcinoma and oral precancer lesions associated with smoking/betel use. 2002;505–11.

  52. Xie H, Hou L, Shields PG, Winn DM, Gridley G, Bravo-otero E, et al. Metabolic polymorphisms, smoking, and oral cancer in Puerto Rico. 2004;14:315–20.

  53. Marques CFS, Koifman S, Koifman RJ, Boffetta P, Brennan P, Hatagima A. Influence of CYP1A1, CYP2E1, GSTM3 and NAT2 genetic polymorphisms in oral cancer susceptibility: results from a case-control study in Rio de Janeiro. Oral Oncol. 2006;42:632–7.

    Article  CAS  PubMed  Google Scholar 

  54. Buch SC, Notani PN, Bhisey RA. Polymorphism at GSTM1, GSTM3 and GSTT1 gene loci and susceptibility to oral cancer in an Indian population at GSTM1, GSTM3 and GSTT1 gene loci on oral cancer tobacco, bidi or cigarette. DNA extracted from white blood cells of 297 cancer patients and 4. 2002;23:803–7.

  55. Sikdar N, Paul RR, Roy B. Glutathione S-transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109:95–101.

    Article  CAS  PubMed  Google Scholar 

  56. Masood N, Kayani MA, Malik FA, Mahjabeen I, Baig RM, Faryal R. Genetic variation in carcinogen metabolizing genes associated with oral cancer in pakistani population. Asian Pac J Cancer Prev. 2011;12:491–5.

    PubMed  Google Scholar 

  57. Sailasree R, Nalinakumari KR, Sebastian P, Kannan S. Influence of methylenetetrahydrofolate reductase polymorphisms in oral cancer patients. J Oral Pathol Med. 2011;40:61–6.

    Article  CAS  PubMed  Google Scholar 

  58. Addala L, Kumar, CHK, Reddy N M, Kumar Reddy TP, Md S. Association of the C677T polymorphism in the MTHFR gene with risk of oral squamous cell carcinoma in South Indian population. Am J Cancer Res Clin Oncol. 2013;1–11.

  59. Tsai C, Hsu C, Tsai M, Tsou Y, Hua C. Methylenetetrahydrofolate reductase (MTHFR) genotype, smoking habit, metastasis and oral cancer in Taiwan. 2011;2400:2395–9.

  60. Weinstein SJ, Gridley G, Harty LC, Diehl SR, Brown LM, Winn DM, et al. Folate intake, serum homocysteine and methylenetetrahydrofolate reductase (MTHFR) C677T genotype are not associated with oral cancer risk in Puerto Rico. 2002;762–7.

  61. Tsai C, Chang W, Lin K, Shih L, Tsai M. Significant association of interleukin-10 genotypes and oral cancer susceptibility in Taiwan. 2014;3738:3731–7.

  62. Yao J-G, Gao L-B, Liu Y-G, Li J, Pang G-F. Genetic variation in interleukin-10 gene and risk of oral cancer. Clin Chim Acta. 2008;388:84–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mittal M, Kapoor V, Mohanti BK, Das SN. Functional variants of COX-2 and risk of tobacco-related oral squamous cell carcinoma in high-risk Asian Indians. Oral Oncol. 2010;46:622–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lakshmi A, Muralidhar S, Kumar CK, Kumar AP, Chakravarthy PK, Anjaneyulu V, et al. Cyclooxygenase-2-765G>C functional promoter polymorphism and its association with oral squamous cell carcinoma. J Investig Clin Dent. 2012;3:182–8.

    Article  PubMed  Google Scholar 

  65. Lin YC, Huang HI, Wang LH, Tsai CC, Lung O, Dai CY, et al. Polymorphisms of COX-2 -765G > C and p53 codon 72 and risks of oral squamous cell carcinoma in a Taiwan population. Oral Oncol. 2008;44:798–804.

    Article  CAS  PubMed  Google Scholar 

  66. Pu X, Lippman SM, Yang H, Lee JJ, Wu X. Cyclooxygenase-2 gene polymorphisms reduce the risk of oral premalignant lesions. Cancer. 2009;115:1498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen M-K, Chiou H-L, S-C S, Chung T-T, Tseng H-C, Tsai H-T, et al. The association between hypoxia inducible factor-1α gene polymorphisms and increased susceptibility to oral cancer. Oral Oncol. 2009;45:e222–6.

    Article  CAS  PubMed  Google Scholar 

  68. Shieh T-M, Chang K-W, H-F T, Shih Y-H, Ko S-Y, Chen Y-C, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol. 2010;46:e47–53.

    Article  CAS  PubMed  Google Scholar 

  69. Yen C-Y, Liu S-Y, Chen C-H, Tseng H-F, Chuang L-Y, Yang C-H, et al. Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. J Oral Pathol Med. 2008;37:271–7.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai C, Chang W, Liu J, Tsai M, Lin C, Bau D. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan. 2014;2956:2951–6.

  71. Kietthubthew S, Sriplung H, WW A, Ishida T. Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health. 2006;209:21–9.

    Article  CAS  PubMed  Google Scholar 

  72. Bisarro M, Losi-guembarovski R, Maria E, Fonseca DS, Morita MC, Henrique G, et al. Allelic variants of XRCC1 and XRCC3 repair genes and susceptibility of oral cancer in Brazilian patients. 2013;180–5.

  73. Song N. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001;22:11–6.

    Article  CAS  PubMed  Google Scholar 

  74. Rebbeck T. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomark Prev. 1997;6:733–43.

    CAS  Google Scholar 

  75. Curtin K. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomark Prev. 2004;13:285–92.

    Article  CAS  Google Scholar 

  76. Couper K, Blount D, Riley E. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7.

    Article  CAS  PubMed  Google Scholar 

  77. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    CAS  PubMed  Google Scholar 

  78. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Nasir Khan K, Masferrer J, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.

    Article  CAS  PubMed  Google Scholar 

  79. Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12.

    Article  PubMed  Google Scholar 

  80. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells service XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. 1999;2633–8.

  81. Martinez-Marignac VL, Rodrigue A, Davidson D, Couillard M, Al-Moustafa A-E, Abramovitz M, et al. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One. 2011;6:e16394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Juwle A, Saranath D. BRCA1/BRCA2 gene mutations/SNPs and BRCA1 haplotypes in early-onset breast cancer patients of Indian ethnicity. Med Oncol. 2012;29:3272–81.

    Article  CAS  PubMed  Google Scholar 

  83. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376:245–51.

    Article  CAS  PubMed  Google Scholar 

  84. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Lin Y, Hung H, Tien W, Shieh T. Polymorphisms in kallikrein7 and 10 genes and oral cancer risks in Taiwan betel quid chewers and smokers. 2013;824–32.

  86. Majumder M, Ghosh S, Roy B. Association between polymorphisms at N-acetyltransferase 1 (NAT1) & risk of oral leukoplakia & cancer. Indian J Med Res. 2012;136:605–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang SF, Chen IH, Liao CT, Wang HM, Liou SH, Hsieh LL. Combined effects of MDM2 SNP 309 and p53 mutation on oral squamous cell carcinomas associated with areca quid chewing. Oral Oncol. 2009;45:16–22.

    Article  CAS  PubMed  Google Scholar 

  88. Tu H, Chen H, Kao S, Lin S. MDM2 SNP 309 and p 53 codon 72 polymorphisms are associated with the outcome of oral carcinoma patients receiving postoperative irradiation. 2008;87:243–52.

  89. Misra C, Majumder M, Bajaj S, Ghosh S, Roy B. Polymorphisms at p53, p73, and MDM2 loci modulate the risk of tobacco associated leukoplakia and oral. Cancer. 2009;800:790–800.

    Google Scholar 

  90. Hamid S, Yang Y, Ng K, Peng L, Mazlipah S, Binti R, et al. MDM2 SNP309 does not confer an increased risk to oral squamous cell carcinoma but may modulate the age of disease onset. Oral Oncol. 2009;45:496–500.

    Article  CAS  PubMed  Google Scholar 

  91. Balaji L, Singh B, Bhaskar LVKS. An unlikely role for the NAT2 genotypes and haplotypes in the oral cancer of South Indians. Arch Oral Biol. 2011;57:513–8.

    Article  PubMed  Google Scholar 

  92. Tsai M-H, Chen W-C, Tsai C-H, Hang L-W, Tsai F-J. Interleukin-4 gene, but not the interleukin-1 beta gene polymorphism, is associated with oral cancer. J Clin Lab Anal. 2005;19:93–8.

    Article  CAS  PubMed  Google Scholar 

  93. Vairaktaris E, Yannopoulos A, Vassiliou S, Serefoglou Z, Vylliotis A, Nkenke E, et al. Strong association of interleukin-4 (-590 C/T) polymorphism with increased risk for oral squamous cell carcinoma in Europeans. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2007;104:796–802.

    Article  Google Scholar 

  94. Karimi MY, Kapoor V, Sharma SC, Das SN. Genetic polymorphisms in FAS (CD95) and FAS ligand (CD178) promoters and risk of tobacco-related oral carcinoma: gene-gene interactions in high-risk Indians. Cancer Investig. 2013;31:1–6.

    Article  CAS  Google Scholar 

  95. Wang LH, Ting SC, Chen CH, Tsai CC, Lung O, Liu TC, et al. Polymorphisms in the apoptosis-associated genes FAS and FASL and risk of oral cancer and malignant potential of oral premalignant lesions in a Taiwanese population. J Oral Pathol Med. 2010;39:155–61.

    Article  PubMed  Google Scholar 

  96. Zhou C, Zhou Y, Li J, Zhang Y, Jiang L, Zeng X, et al. The Arg194Trp polymorphism in the X-ray repair cross-complementing group 1 gene as a potential risk factor of oral cancer: a meta-analysis. Tohoku J Exp Med. 2009;219(1):43–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjaya Saranath.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Multani, S., Saranath, D. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene. Tumor Biol. 37, 14501–14512 (2016). https://doi.org/10.1007/s13277-016-5322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5322-5

Keywords

Navigation