Skip to main content

Advertisement

Log in

Upregulation of annexin A1 expression by butyrate in human melanoma cells induces invasion by inhibiting E-cadherin expression

  • Original Article
  • Published:
Tumor Biology

Abstract

Epithelial to mesenchymal transition (EMT) is a critical step in the metastasis of epithelial cancer cells. Butyrate, which is produced from dietary fiber by colonic bacterial fermentation, has been reported to influence EMT. However, some studies have reported that butyrate promotes EMT, while others have reported an inhibitory effect. To clarify these controversial results, it is necessary to elucidate the mechanism by which butyrate can influence EMT. In this study, we examined the potential role of annexin A1 (ANXA1), which was previously reported to promote EMT in breast cancer cells, as a mediator of EMT regulation by butyrate. We found that ANXA1 mRNA and protein were expressed in highly invasive melanoma cell lines (A2058 and A375), but not in SK-MEL-5 cells, which are less invasive. We also showed that butyrate induced ANXA1 mRNA and protein expression and promoted EMT-related cell invasion in SK-MEL-5 cells. Downregulation of ANXA1 expression using specific small interfering RNAs in butyrate-treated SK-MEL-5 cells resulted in increased expression of the epithelial marker E-cadherin and decreased cell invasion. Moreover, overexpressing ANXA1 decreased the expression of the E-cadherin. Collectively, these results indicate that butyrate induces the expression of ANXA1 in human melanoma cells, which then promotes invasion through activating the EMT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duband JL, Monier F, Delannet M, Newgreen D. Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154:63–78.

    Article  CAS  Google Scholar 

  2. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  5. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98:1512–20.

    Article  CAS  PubMed  Google Scholar 

  6. Diamond ME, Sun L, Ottaviano AJ, Joseph MJ, Munshi HG. Differential growth factor regulation of n-cadherin expression and motility in normal and malignant oral epithelium. J Cell Sci. 2008;121:2197–207.

    Article  CAS  PubMed  Google Scholar 

  7. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–57.

    Article  CAS  PubMed  Google Scholar 

  8. Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14:6107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.

    CAS  PubMed  Google Scholar 

  10. Christofori G, Semb H. The role of the cell-adhesion molecule e-cadherin as a tumour-suppressor gene. Trends Biochem Sci. 1999;24:73–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  CAS  PubMed  Google Scholar 

  12. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of e-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  13. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17:1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heerdt BG, Houston MA, Augenlicht LH. Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines. Cancer Res. 1994;54:3288–93.

    CAS  PubMed  Google Scholar 

  15. Janson W, Brandner G, Siegel J. Butyrate modulates DNA-damage-induced p53 response by induction of p53-independent differentiation and apoptosis. Oncogene. 1997;15:1395–406.

    Article  CAS  PubMed  Google Scholar 

  16. Ramos MG, Rabelo FL, Duarte T, Gazzinelli RT, Alvarez-Leite JI. Butyrate induces apoptosis in murine macrophages via caspase-3, but independent of autocrine synthesis of tumor necrosis factor and nitric oxide. Braz J Med Biol Res. 2002;35:161–73.

    Article  CAS  PubMed  Google Scholar 

  17. Daly K, Shirazi-Beechey SP. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol. 2006;25:49–62.

    Article  CAS  PubMed  Google Scholar 

  18. Kostyniuk CL, Dehm SM, Batten D, Bonham K. The ubiquitous and tissue specific promoters of the human src gene are repressed by inhibitors of histone deacetylases. Oncogene. 2002;21:6340–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem. 1982;42:65–82.

    CAS  PubMed  Google Scholar 

  20. Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J. Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of snail facilitates cancer progression. Biochim Biophys Acta. 2013;1833:663–71.

    Article  CAS  PubMed  Google Scholar 

  21. Serpa J, Caiado F, Carvalho T, Torre C, Goncalves LG, Casalou C, Lamosa P, Rodrigues M, Zhu Z, Lam EW, Dias S. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem. 2010;285:39211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barshishat M, Polak-Charcon S, Schwartz B. Butyrate regulates e-cadherin transcription, isoform expression and intracellular position in colon cancer cells. Br J Cancer. 2000;82:195–203.

    Article  CAS  PubMed  Google Scholar 

  23. Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ. Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med. 2013;31:967–74.

    CAS  PubMed  Google Scholar 

  24. Guo C, Liu S, Sun MZ. Potential role of anxa1 in cancer. Future Oncol. 2013;9:1773–93.

    Article  CAS  PubMed  Google Scholar 

  25. Lim LH, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J. 2007;21:968–75.

    Article  CAS  PubMed  Google Scholar 

  26. Biaoxue R, Xiguang C, Shuanying Y. Annexin a1 in malignant tumors: current opinions and controversies. Int J Biol Markers. 2014;29:e8–20.

    Article  PubMed  Google Scholar 

  27. Solito E, de Coupade C, Parente L, Flower RJ, Russo-Marie F. Human annexin 1 is highly expressed during the differentiation of the epithelial cell line a 549: involvement of nuclear factor interleukin 6 in phorbol ester induction of annexin 1. Cell Growth Differ. 1998;9:327–36.

    CAS  PubMed  Google Scholar 

  28. Solito E, de Coupade C, Parente L, Flower RJ, Russo-Marie F. Il-6 stimulates annexin 1 expression and translocation and suggests a new biological role as class ii acute phase protein. Cytokine. 1998;10:514–21.

    Article  CAS  PubMed  Google Scholar 

  29. Kang JS, Calvo BF, Maygarden SJ, Caskey LS, Mohler JL, Ornstein DK. Dysregulation of annexin i protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res. 2002;8:117–23.

    CAS  PubMed  Google Scholar 

  30. D’Acunto CW, Fontanella B, Rodriquez M, Taddei M, Parente L, Petrella A. Histone deacetylase inhibitor fr235222 sensitizes human prostate adenocarcinoma cells to apoptosis through up-regulation of annexin a1. Cancer Lett. 2010;295:85–91.

    Article  PubMed  Google Scholar 

  31. Petrella A, D’Acunto CW, Rodriquez M, Festa M, Tosco A, Bruno I, Terracciano S, Taddei M, Paloma LG, Parente L. Effects of fr235222, a novel hdac inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin a1. Eur J Cancer. 2008;44:740–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lecona E, Barrasa JI, Olmo N, Llorente B, Turnay J, Lizarbe MA. Upregulation of annexin a1 expression by butyrate in human colon adenocarcinoma cells: role of p53, nf-y, and p38 mitogen-activated protein kinase. Mol Cell Biol. 2008;28:4665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mu D, Gao Z, Guo H, Zhou G, Sun B. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer du145 cells by up-regulation of the expression of annexin a1. PLoS One. 2013;8:e74922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Graham KA, Buick RN. Sodium butyrate induces differentiation in breast cancer cell lines expressing the estrogen receptor. J Cell Physiol. 1988;136:63–71.

    Article  CAS  PubMed  Google Scholar 

  35. Weaver EM, Zamora FJ, Puplampu-Dove YA, Kiessu E, Hearne JL, Martin-Caraballo M. Regulation of t-type calcium channel expression by sodium butyrate in prostate cancer cells. Eur J Pharmacol. 2015;749:20–31.

    Article  CAS  PubMed  Google Scholar 

  36. de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, Pardali E, Le Devedec SE, Smit VT, van der Wal A, Van’t Veer LJ, Cleton-Jansen AM, ten Dijke P, van de Water B. Annexin a1 regulates tgf-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci U S A. 2010;107:6340–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin a1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget. 2015;6:25076–92.

    Article  PubMed  Google Scholar 

  38. Wang Y, Lin Z, Sun L, Fan S, Huang Z, Zhang D, Yang Z, Li J, Chen W. Akt/Ezrin Tyr353/NF-kappab pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer. 2014;110:695–705.

    Article  CAS  PubMed  Google Scholar 

  39. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:201–12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kang H, Ko J, Jang SW. The role of annexin a1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells. Biochem Biophys Res Commun. 2012;423:188–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2013R1A1A2008633) and Asan Institute for Life Sciences, Seoul, Korea (2014-570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Wuk Jang.

Ethics declarations

Conflicts of interest

None.

Additional information

Jimin Shin and In-Sung Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Song, IS., Pak, J.H. et al. Upregulation of annexin A1 expression by butyrate in human melanoma cells induces invasion by inhibiting E-cadherin expression. Tumor Biol. 37, 14577–14584 (2016). https://doi.org/10.1007/s13277-016-5306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5306-5

Keywords

Navigation