Skip to main content

Advertisement

Log in

Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women

  • Original Article
  • Published:
Tumor Biology

Abstract

Pharmacogenomic studies play a significant role in understanding the risk of breast cancer where genetic abnormalities are implicated as the etiology of cancer. Various polymorphisms of tumor suppressor gene TP53 and E-cadherin (CDH1) have been found to be associated with increased breast cancer risk worldwide. This study aimed to analyze the contribution of TP53 and CDH1 gene anomalies in breast cancer risk in the Bangladeshi breast cancer patients. For risk determination, 310 patients with breast cancer and 250 controls from Bangladeshi women were recruited who are matched up with age and use of contraceptives with patients. Genetic polymorphisms were detected by using polymerase chain reaction restriction fragment length polymorphism. A significant association was found between TP53Arg72Pro (rs1042522) and CDH1 -160 C/A (rs16260) polymorphisms and breast cancer risk. In case of P53rs1042522 polymorphism, Arg/Pro (P = 0.0053, odds ratio (OR) = 1.69) and Pro/Pro (P = 0.018, OR = 1.83) genotypes were associated with increased risk of breast cancer in comparison to the Arg/Arg genotype. Arg/Pro + Pro/Pro genotype and Pro allele also increased the risk of breast cancer (P = 0.002, OR = 1.73; P = 0.004, OR = 1.43, respectively). In case of CDH1rs16260 polymorphism, C/A heterozygote and combined C/A + A/A genotypes were found to be strongly associated (P = 0.005, OR = 1.67; P = 0.0037, OR = 1.68) with increased risk of breast cancer. The variant A allele also increased the breast cancer risk (P = 0.0058, OR = 1.52). The present study demonstrates that P53Arg72Pro and CDH1rs16260 polymorphisms are associated with elevated breast cancer risk in the Bangladeshi population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 2008;34(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr. Accessed 3 March 2015.

  3. Garbee D, Danna D, Lemoine C. The impact of side effects on adherence and persistence with oral anti-cancer agents in women diagnosed with early stage breast cancer: a systematic review of quantitative evidence protocol. JBI Database Syst Rev Implement Rep. 2014;12(10):27–39.

    Article  Google Scholar 

  4. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.

    Article  CAS  PubMed  Google Scholar 

  5. DeBruin LS, Josephy PD. Perspectives on the chemical etiology of breast cancer. Environ Health Perspect. 2002;1:119–28.

    Article  Google Scholar 

  6. Dumitrescu RG, Cotarla I. Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med. 2005;9(1):208–21.

    Article  CAS  PubMed  Google Scholar 

  7. Leong SP, Shen ZZ, Liu TJ, Agarwal G, Tajima T, Paik NS, et al. Is breast cancer the same disease in Asian and Western countries? World J Surg. 2010;34(10):2308–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Amaral P, Miguel R, Mehdad A, Cruz C, MonteiroGrillo I, Camilo M, et al. Body fat and poor diet in breast cancer women. Nutr Hosp. 2010;25(3):456–61.

    CAS  PubMed  Google Scholar 

  9. Tipirisetti NR, Govatati S, Kandukuri LR, Cingeetham A, Singh L, Digumarti RR, et al. Association of E-cadherin single-nucleotide polymorphisms with the increased risk of breast cancer: a study in South Indian women. Genet Test Mol Biomarkers. 2013;17(6):494–500.

    Article  CAS  PubMed  Google Scholar 

  10. Sekar P, Bharti JN, Nigam JS, Sharma A, Soni PB. Evaluation of p53, HoxD10, and E-Cadherin status in breast cancer and correlation with histological grade and other prognostic factors. J Oncol. 2014;2014:702527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz GF, Hughes KS, Lynch HT, Fabian CJ, Fentiman IS, Robson ME, et al. The International Consensus Conference Committee. Proceedings of the international consensus conference on breast cancer risk, genetics, & risk management, April, 2007. Cancer. 2008;113(10):2627–37.

    Article  PubMed  Google Scholar 

  12. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009;17(6):722–31.

    Article  CAS  PubMed  Google Scholar 

  13. Hou J, Jiang Y, Tang W, Jia S. p53 codon 72 polymorphism and breast cancer risk: A meta-analysis. Exp Ther Med. 2013;5(5):1397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Arfaoui A, Douik H, Kablouti G, Chaaben AB, Handiri N, Zid Z, et al. Role of p53 Codon72 SNP in breast cancer risk and anthracycline resistance. Anticancer Res. 2015;35(3):1763–9.

    PubMed  Google Scholar 

  15. Yee KS, Vousden KH. Complicating the complexity of p53. Carcinogenesis. 2005;26(8):1317–22.

    Article  CAS  PubMed  Google Scholar 

  16. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–12.

    Article  CAS  PubMed  Google Scholar 

  17. Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 2009;458(7242):1127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21(3):485–95.

    Article  CAS  PubMed  Google Scholar 

  19. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;9(45):145–52.

    PubMed  Google Scholar 

  20. Zhou J, Ahn J, Wilson SH, Prives C. A role for p53 in base excision repair. EMBO J. 2001;20(4):914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norberg T, Klaar S, Kärf G, Nordgren H, Holmberg L, Bergh J. Increased p53 mutation frequency during tumor progression—results from a breast cancer cohort. Cancer Res. 2001;61(22):8317–21.

    CAS  PubMed  Google Scholar 

  22. Bai L, Zhu WG. p53: structure, function and therapeutic applications. J Cancer Mol. 2006;2(4):141–53.

    CAS  Google Scholar 

  23. Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 2009;1(5):a001883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Ni M, Li J, Zhang Y, Ouyang Q, Tang C. Decision making of the p53 network: death by integration. J Theor Biol. 2011;271(1):205–11.

    Article  CAS  PubMed  Google Scholar 

  25. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9(10):701–13.

    CAS  PubMed  Google Scholar 

  26. Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer. 2004;108(2):196–9.

    Article  CAS  PubMed  Google Scholar 

  27. Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9(2):95–107.

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan A, Syed N, Gasco M, Bergamaschi D, Trigiante G, Attard M, et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene. 2004;23(19):3328–37.

    Article  CAS  PubMed  Google Scholar 

  29. Huang XE, Hamajima N, Katsuda N, Matsuo K, Hirose K, Mizutani M, et al. Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer. 2003;10(4):307–11.

    Article  PubMed  Google Scholar 

  30. Pećina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003;3(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Asiaf A, Ahmad ST, Aziz SA, Malik AA, Rasool Z, Masood A, et al. Loss of expression and aberrant methylation of the CDH1 (E-cadherin) gene in breast cancer patients from Kashmir. Asian Pac J Cancer Prev. 2014;15(15):6397–403.

    Article  PubMed  Google Scholar 

  32. Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55):6920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.

    Article  CAS  PubMed  Google Scholar 

  34. Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384(1):6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grant CM, Kyprianou N. Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Transl Androl Urol. 2013;2(3):202–11.

    PubMed  PubMed Central  Google Scholar 

  37. Beeghly-Fadiel A, Lu W, Gao YT, Long J, Deming SL, Cai Q, et al. E-cadherin polymorphisms and breast cancer susceptibility: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat. 2010;121(2):445–52.

    Article  CAS  PubMed  Google Scholar 

  38. Weinberg R. The biology of cancer. 1st ed. Garland Science. 2006.

  39. Nakamura A, Shimazaki T, Kaneko K, Shibata M, Matsumura T, Nagai M, et al. Characterization of DNA polymorphisms in the E-cadherin gene (CDH1) promoter region. Mutat Res. 2002;502(1–2):19–24.

    Article  CAS  PubMed  Google Scholar 

  40. Wang GY, Lu CQ, Zhang RM, Hu XH, Luo ZW. The E-cadherin gene polymorphism 160C->A and cancer risk: a HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol. 2008;167(1):7–14.

    Article  PubMed  Google Scholar 

  41. Akbas H, Uyanikoglu A, Aydogan T, Atay AE, Dilmec F, Cerrah S, et al. E-cadherin (cdh1) gene -160c>a promoter polymorphism and risk of gastric and esophageal cancers. Acta Medica Mediterranea. 2013;29:671.

    Google Scholar 

  42. Cattaneo F, Venesio T, Molatore S, Russo A, Fiocca R, Frattini M, et al. Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk. Anticancer Res. 2006;26(6B):4627–32.

    CAS  PubMed  Google Scholar 

  43. Qiu LX, Li RT, Zhang JB, Zhong WZ, Bai JL, Liu BR, et al. The E-cadherin (CDH1)--160 C/A polymorphism and prostate cancer risk: a meta-analysis. Eur J Hum Genet. 2009;17(2):244–9.

    Article  CAS  PubMed  Google Scholar 

  44. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10(10):955–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Islam MS, Islam MS, Parvin S, Ahmed MU, Sayeed MS, Uddin MM, et al. Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients. Tumour Biol. 2015;36(7):5451–7.

    Article  CAS  PubMed  Google Scholar 

  46. World Medical Association Declaration of Helsinki (2008) Ethical principles for medical research involving human subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 59th WMA General Assembly Seoul, South Korea.

  47. Islam MS, Ahmed MU, Sayeed MS, Maruf AA, Mostofa AG, Hussain SM, et al. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013;416:11–9.

    Article  CAS  PubMed  Google Scholar 

  48. Vijayaraman KP, Veluchamy M, Murugesan P, Shanmugiah KP, Kasi PD. p53 exon 4 (codon 72) polymorphism and exon 7 (codon 249) mutation in breast cancer patients in southern region (Madurai) of Tamil Nadu. Asian Pac J Cancer Prev. 2012;13(2):511–6.

    Article  PubMed  Google Scholar 

  49. Pérez LO, Abba MC, Dulout FN, Golijow CD. Evaluation of p53 codon 72 polymorphism in adenocarcinomas of the colon and rectum in La Plata Argentina. World J Gastroenterol. 2006;12(9):1426–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bojesen SE, Nordestgaard BG. The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell Cycle. 2008;7(2):158–63.

    Article  CAS  PubMed  Google Scholar 

  51. Katkoori VR, Jia X, Shanmugam C, Wan W, Meleth S, Bumpers H, et al. Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin Cancer Res. 2009;15(7):2406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deng QW, He BS, Pan YQ, Sun HL, Xu YQ, Gao TY, et al. Roles of E-cadherin (CDH1) genetic variations in cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2014;15(8):3705–13.

    Article  PubMed  Google Scholar 

  53. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis. 2008;25(6):629–42.

    Article  CAS  PubMed  Google Scholar 

  54. Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006;209(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  55. Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, et al. Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci U S A. 2000;97(23):12770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001;268:2764–72.

    Article  CAS  PubMed  Google Scholar 

  57. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, et al. P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28(10):709–15.

    Article  PubMed  Google Scholar 

  58. Gaudet MM, Gammon MD, Bensen JT, Sagiv SK, Shantakumar S, Teitelbaum SL, et al. Genetic variation of TP53, polycyclic aromatic hydrocarbon-related exposures, and breast cancer risk among women on Long Island New York. Breast Cancer Res Treat. 2008;108(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lum SS, Chua HW, Li H, Li WF, Rao N, Wei J, et al. MDM2 SNP309 G allele increases risk but the T allele is associated with earlier onset age of sporadic breast cancers in the Chinese population. Carcinogenesis. 2008;29(4):754–61.

    Article  CAS  PubMed  Google Scholar 

  60. Proestling K, Hebar A, Pruckner N, Marton E, Vinatzer U, Schreiber M. The pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS ONE. 2012;7:e47325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noma C, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S. Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in Japanese women. Cancer Lett. 2004;210(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  62. Själander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, et al. p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis. 1996;17(6):1313–6.

    Article  PubMed  Google Scholar 

  63. Buyru N, Tigli H, Dalay N. P53 codon 72 polymorphism in breast cancer. Oncol Rep. 2003;10(3):711–4.

    CAS  PubMed  Google Scholar 

  64. Kara N, Karakus N, Ulusoy AN, Ozaslan C, Gungor B, Bagci H. P53 codon 72 and HER2 codon 655 polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2010;29(7):387–92.

    Article  CAS  PubMed  Google Scholar 

  65. Doosti A, Dehkordi PG, Davoudi N. A p53 codon 72 polymorphism associated with breast cancer in Iranian patients. Afr J Pharm Pharmacol. 2011;5:1278–81.

    Article  CAS  Google Scholar 

  66. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, et al. P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28(3):709–15.

    Article  PubMed  Google Scholar 

  67. Papadakis EN, Dokianakis DN, Spandidos DA. p53 codon 72 polymorphism as a risk factor in the development of breast cancer. Mol Cell Biol Res Commun. 2000;3(6):389–92.

    Article  CAS  PubMed  Google Scholar 

  68. Damin AP, Frazzon AP, Damin DC, Roehe A, Hermes V, Zettler C, et al. Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev. 2006;30(6):523–9.

    Article  CAS  PubMed  Google Scholar 

  69. Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(1):127–30.

    CAS  PubMed  Google Scholar 

  70. Ohayon T, Gershoni-Baruch R, Papa MZ, Distelman Menachem T, Eisenberg Barzilai S, Friedman E. The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer. 2005;92(6):1144–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dumont P, Leu JI, Della Pietra 3rd AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33(3):357–65.

    Article  CAS  PubMed  Google Scholar 

  72. Osorio A, Martinez-Delgado B, Pollan M, Cuadros M, Urioste M, Torrenteras C, et al. A haplotype containing the p53 polymorphisms Ins16bp and Arg72Pro modifies cancer risk in BRCA2 mutation carriers. Hum Mutat. 2006;27(3):242–8.

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Dumont P, Della Pietra A, Shetler C, Murphy ME. The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005;280(25):24245–51.

    Article  CAS  PubMed  Google Scholar 

  74. Mostaid MS, Ahmed MU, Islam MS, Bin Sayeed MS, Hasnat A. Lung cancer risk in relation to TP53 codon 47 and codon 72 polymorphism in Bangladeshi population. Tumour Biol. 2014;35(10):10309–17.

    Article  CAS  PubMed  Google Scholar 

  75. Grochola LF, Zeron-Medina J, Mériaux S, Bond GL. Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol. 2010;2(5):a001032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lei H, Sjöberg-Margolin S, Salahshor S, Werelius B, Jandáková E, Hemminki K, et al. CDH1 mutations are present in both ductal and lobular breast cancer, but promoter allelic variants show no detectable breast cancer risk. Int J Cancer. 2002;98:199–204.

    Article  CAS  PubMed  Google Scholar 

  77. Yu JC, Hsu HM, Chen ST, Hsu GC, Huang CS, Hou MF, et al. Breast cancer risk associated with genotypic polymorphism of the genes involved in the estrogen-receptor-signaling pathway: a multigenic study on cancer susceptibility. J Biomed Sci. 2006;13(3):419–32.

    Article  CAS  PubMed  Google Scholar 

  78. Wong AS, Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol. 2003;161(6):1191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kalemi TG, Lambropoulos AF, Gueorguiev M, Chrisafi S, Papazisis KT, Kotsis A. The association of p53 mutations and p53 codon 72, Her 2 codon 655 and MTHFR C677T polymorphisms with breast cancer in Northern Greece. Cancer Lett. 2005;222:57e65.

    Article  CAS  Google Scholar 

  80. Suspitsin EN, Buslov KG, Grigoriev MY, Ishutkina JG, Ulibina JM, Gorodinskaya VM, et al. Evidence against involvement of p53 polymorphism in breast cancer predisposition. Int J Cancer. 2003;103(3):431–3.

    Article  CAS  PubMed  Google Scholar 

  81. Tommiska J, Eerola H, Heinonen M, Salonen L, Kaare M, Tallila J, et al. Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res. 2005;11(14):5098–103.

    Article  CAS  PubMed  Google Scholar 

  82. Tsai KB, Hou MF, Lin HJ, Chai CY, Liu CS, Huang TJ. Expression of HER-2/NEU oncoprotein in familial and non-familial breast cancer. Kaohsiung J Med Sci. 2001;17:64e76.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to all the staffs, nurses, and physicians of Ahsania Mission Cancer and General Hospital Dhaka Medical College Hospital and Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh and the participants of this study. The authors are also thankful to all the staffs and faculty members of the Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Bangladesh for their partial financial support for this study. The authors have no other relevant affiliation or financial involvement with any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abul Hasnat.

Ethics declarations

Conflicts of interest

None

Ethical approval

The ethical committees of the hospitals approved the study protocol, and the study was performed according to the descriptions of Helsinki and its following revisions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabnaz, S., Ahmed, M.U., Islam, M.S. et al. Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumor Biol. 37, 7229–7237 (2016). https://doi.org/10.1007/s13277-015-4612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4612-7

Keywords

Navigation