Skip to main content

Advertisement

Log in

The role of cullin proteins in gastric cancer

  • Review
  • Published:
Tumor Biology

Abstract

The cullin proteins are a family of scaffolding proteins that associate with RING proteins and ubiquitin E3 ligases and mediate substrate–receptor bindings. Thus, cullin proteins regulate the specificity of ubiquitin targeting in the regulation of proteins involved in various cellular processes, including proliferation, differentiation, and apoptosis. There are seven cullin proteins that have been identified in eukaryotes: CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and CUL7/p53-associated parkin-like cytoplasmic protein. All of these proteins contain a conserved cullin homology domain that binds to RING box proteins. Cullin–RING ubiquitin ligase complexes are activated upon post-translational modification by neural precursor cell-expressed, developmentally downregulated protein 8. The aberrant expression of several cullin proteins has been implicated in many cancers though the significance in gastric cancer has been less well investigated. This review provides the first systematic discussion of the associations between all members of the cullin protein family and gastric cancer. Functional and regulatory mechanisms of cullin proteins in gastric carcinoma progression are also summarized along with a discussion concerning future research areas. Accumulating evidence suggests a critical role of cullin proteins in tumorigenesis, and a better understanding of the function of these individual cullin proteins and their targets will help identify potential biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi:10.3322/caac.21262.

    PubMed  Google Scholar 

  2. Lin Y, Ueda J, Kikuchi S, Totsuka Y, Wei WQ, Qiao YL, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17:4421–8. doi:10.3748/wjg.v17.i39.4421.

    PubMed  PubMed Central  Google Scholar 

  3. Fang WL, Huang KH, Lan YT, Chen MH, Chao Y, Lo SS, et al. The risk factors of lymph node metastasis in early gastric cancer. Pathol Onocl Res. 2015. doi:10.1007/s12253-015-9920-0.

    Google Scholar 

  4. Coburn NG, Lourenco LG, Rossi SE, Gunraj N, Mahar AL, Helyer LK, et al. Management of gastric cancer in Ontario. J Surg Oncol. 2010;102:54–63. doi:10.1002/jso.21561.

    PubMed  Google Scholar 

  5. Chen Y, Awan N, Haveman JW, Apostolou C, Chang DK, Merrett ND. Gastric cancer: Australian outcomes of multi-modality treatment with curative intent. ANZ J Surg. 2014. doi:10.1111/ans.12693.

    Google Scholar 

  6. Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci. 2012;19:67. doi:10.1186/1423-0127-19-67.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, Nussinov R. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. PLoS Comput Biol. 2009;5, e1000527. doi:10.1371/journal.pcbi.1000527.

    PubMed  PubMed Central  Google Scholar 

  8. Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys. 2013;67:15–24. doi:10.1007/s12013-013-9636-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell Biol. 2009;33:275–86. doi:10.1016/j.molcel.2009.01.014.

    CAS  Google Scholar 

  10. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9:536–42. doi:10.1038/embor.2008.93.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–71. doi:10.1038/nrm2767.

    CAS  PubMed  Google Scholar 

  12. Ikeda F, Crosetto N, Dikic I. What determines the specificity and outcomes of ubiquitin signaling? Cell. 2010;143:677–81. doi:10.1016/j.cell.2010.10.026.

    CAS  PubMed  Google Scholar 

  13. Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life. 2012;64:136–42. doi:10.1002/iub.589.

    CAS  PubMed  Google Scholar 

  14. Sekiyama N, Jee J, Isogai S, Akagi K, Huang TH, Ariyoshi M, et al. NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80. J Biomol NMR. 2012;52:339–50. doi:10.1007/s10858-012-9614-9.

    CAS  PubMed  Google Scholar 

  15. Hofmann K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst). 2009;8:544–56. doi:10.1016/j.dnarep.2009.01.003.

    CAS  Google Scholar 

  16. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65. doi:10.1016/j.cell.2008.04.012.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore. Angew Chem Int Ed Engl. 2013;52:192–8. doi:10.1002/anie.201205656.

    CAS  PubMed  Google Scholar 

  18. Lee EK, Diehl JA. SCFs in the new millennium. Oncogene. 2014;33:2011–8. doi:10.1038/onc.2013.144].

    CAS  PubMed  Google Scholar 

  19. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009;37(Pt 5):937–53. doi:10.1042/BST0370937].

    CAS  PubMed  Google Scholar 

  20. Pan Y, Xu H, Liu R, Jia L. Induction of cell senescence by targeting to Cullin-RING Ligases (CRLs) for effective cancer therapy. Int J Biochem Mol Biol. 2012;3:273–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu A, Pfeffer SR. A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol. 2014;24(7):389–99. doi:10.1016/j.tcb2014.02.011.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2010;20:714–21. doi:10.1016/j.sbi.2010.08.010.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee J, Zhou P. Cullins and cancer. Genes Cancer. 2010;1:690–9. doi:10.1177/1947601910382899.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12:220. doi:10.1186/gb-2011-12-4-220.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Watson IR, Irwin MS, Ohh M. NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell. 2011;19:168–76. doi:10.1016/j.ccr.2011.01.002.

    CAS  PubMed  Google Scholar 

  26. Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20. doi:10.1038/nrm1547.

    CAS  PubMed  Google Scholar 

  27. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9. doi:10.1038/416703a.

    CAS  PubMed  Google Scholar 

  28. Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics. 2013;40:97–106. doi:10.1016/j.jgg.2013.02.001.

    CAS  PubMed  Google Scholar 

  29. Wang W, Chen Y, Deng J, Zhou J, Gu X, Tang Y, et al. Cullin1 is a novel prognostic marker and regulates the cell proliferation and metastasis in colorectal cancer. J Cancer Res Clin Oncol. 2015. doi:10.1007/s00432-015-1931-4.

    Google Scholar 

  30. Skaar JR, D’Angiolella V, Pagan JK, Pagano M. SnapShot: F box proteins II. Cell. 2009;137:1358. doi:10.1016/j.cell.2009.05.040. 1358 e1351.

    PubMed  Google Scholar 

  31. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81. doi:10.1038/nrm3582.

    CAS  PubMed  Google Scholar 

  32. Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer. 2014;14:233–47. doi:10.1038/nrc3700].

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, et al. p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 2009;69:3788–94. doi:10.1158/0008-5472.CAN-08-2846].

    CAS  PubMed  Google Scholar 

  34. Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67:9006–12. doi:10.1158/0008-5472.CAN-07-1320].

    CAS  PubMed  Google Scholar 

  35. Milne AN, Leguit R, Corver WE, Morsink FH, Polak M, de Leng WW, et al. Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 2010;32:347–59. doi:10.3233/CLO-2010-523].

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Calcagno DQ, Freitas VM, Leal MF, de Souza CR, Demachki S, Montenegro R, et al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol. 2013;13:141. doi:10.1186/1471-230X-13-141.

    PubMed  PubMed Central  Google Scholar 

  37. Cho HJ, Oh YJ, Kwon J, Kwon JY, Kim KS, Kim H. c-Myc stimulates cell invasion by inhibiting FBX8 function. Mol Cells. 2010;30:355–62. doi:10.1007/s10059-010-0134-8.

    CAS  PubMed  Google Scholar 

  38. Wu P, Wang F, Wang Y, Men H, Zhu X, He G, et al. Significance of FBX8 in progression of gastric cancer. Exp Mol Pathol. 2015;98:360–6. doi:10.1016/j.yexmp.2015.03.015.

    CAS  PubMed  Google Scholar 

  39. Yano H, Kobayashi I, Onodera Y, Luton F, Franco M, Mazaki Y, et al. Fbx8 makes Arf6 refractory to function via ubiquitination. Mol Biol Cell. 2008;19:822–32. doi:10.1091/mbc.E07-08-0763.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81. doi:10.1038/nrc1881.

    CAS  PubMed  Google Scholar 

  41. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464:374–9. doi:10.1038/nature08815.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 1825;2012:11–7. doi:10.1016/j.bbcan.2011.09.002.

    Google Scholar 

  43. Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat Genet. 2010;42:83–8. doi:10.1038/ng.498.

    CAS  PubMed  Google Scholar 

  44. Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 2013;34:181–92. doi:10.1007/s13277-012-0527-8.

    CAS  PubMed  Google Scholar 

  45. Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 2011;42:375–83. doi:10.1016/j.humpath.2010.09.003.

    CAS  PubMed  Google Scholar 

  46. Humar B, Fukuzawa R, Blair V, Dunbier A, More H, Charlton A, et al. Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res. 2007;67:2480–9. doi:10.1158/0008-5472.CAN-06-3021.

    CAS  PubMed  Google Scholar 

  47. Giaginis CT, Vgenopoulou S, Tsourouflis GS, Politi EN, Kouraklis GP, Theocharis SE. Expression and clinical significance of focal adhesion kinase in the two distinct histological types, intestinal and diffuse, of human gastric adenocarcinoma. Pathol Oncol Res. 2009;15:173–81. doi:10.1007/s12253-008-9120-2.

    PubMed  Google Scholar 

  48. Ilyin GP, Rialland M, Pigeon C, Guguen-Guillouzo C. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics. 2000;67:40–7. doi:10.1006/geno.2000.6211.

    CAS  PubMed  Google Scholar 

  49. Zhang YW, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A, et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 2009;35:442–53. doi:10.1016/j.molcel.2009.06.030.

    PubMed  PubMed Central  Google Scholar 

  50. Zhang L, Hou Y, Wang M, Wu B, Li N. A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line. J Exp Clin Cancer Res. 2009;28:78. doi:10.1186/1756-9966-28-78.

    PubMed  PubMed Central  Google Scholar 

  51. Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab. 2011;14:339–51. doi:10.1016/j.cmet.2011.07.011.

    CAS  PubMed  Google Scholar 

  52. Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326:718–21. doi:10.1126/science.1176333.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science. 2009;326:722–6. doi:10.1126/science.1176326.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cen G, Ding HH, Liu B, Wu WD. FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration. Tumour Biol. 2014;35:8633–8. doi:10.1007/s13277-014-2104-9.

    CAS  PubMed  Google Scholar 

  55. MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci. 2012;125:1621–6. doi:10.1242/Jcs.093781.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Migita K, Takayama T, Matsumoto S, Wakatsuki K, Tanaka T, Ito M, et al. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer. Gastric Cancer. 2014;17:601–9. doi:10.1007/s10120-013-0318-y.

    CAS  PubMed  Google Scholar 

  57. Ohta T, Michel JJ, Schottelius AJ, Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell. 1999;3:535–41.

    CAS  PubMed  Google Scholar 

  58. Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science. 1999;284:662–5.

    CAS  PubMed  Google Scholar 

  59. Chen X, Wang Y, Zang W, Du Y, Li M, Zhao G. miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol. 2014;36:2393–401. doi:10.1007/s13277-014-2849-1.

    PubMed  Google Scholar 

  60. Kong Y, Kejun N, Yin Y. Identification and characterization of CAC1 as a novel CDK2-associated cullin. Cell Cycle. 2014;8:3552–61. doi:10.4161/cc.8.21.9955.

    Google Scholar 

  61. Zheng Q, Zhao LY, Kong Y, Nan KJ, Yao Y, Liao ZJ. CDK-associated Cullin 1 can promote cell proliferation and inhibit cisplatin-induced apoptosis in the AGS gastric cancer cell line. World J Surg Oncol. 2013;11:5. doi:10.1186/1477-7819-11-5.

    PubMed  PubMed Central  Google Scholar 

  62. Park SW, Chung NG, Hur SY, Kim HS, Yoo NJ, Lee SH. Mutational analysis of hypoxia-related genes HIF1alpha and CUL2 in common human cancers. APMIS. 2009;117:880–5. doi:10.1111/j.1600-0463.2009.02550.x.

    CAS  PubMed  Google Scholar 

  63. De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. APOBEC3-mediated editing in HIV type 1 from pediatric patients and its association with APOBEC3G/CUL5 polymorphisms and Vif variability. AIDS Res Hum Retroviruses. 2012;28:619–27. doi:10.1089/AID.2011.0291.

    PubMed  Google Scholar 

  64. Bulatov MEM, Chatterjee S, Knebel A, Shimamura S, Konijnenberg A, Johnson C, et al. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). J Biol Chem. 2015;290:4178–91. doi:10.1074/jbc.M114.616664.

    CAS  PubMed  Google Scholar 

  65. Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, et al. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J Biol Chem. 2008;283:8005–13. doi:10.1074/jbc.M706987200.

    CAS  PubMed  Google Scholar 

  66. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7. doi:10.1111/j.1440-1746.2008.05666.x.

    CAS  PubMed  Google Scholar 

  67. Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, et al. Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 2012;13:468–75. doi:10.1016/j.intimp.2012.05.016.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kazi JU, Ronnstrand L. Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol. 2013;7:693–703. doi:10.1016/j.molonc.2013.02.020.

    CAS  PubMed  Google Scholar 

  69. Lai R-H, Hsiao Y-W, Wang M-J, Lin H-Y, Wu C-W, Chi C-W, et al. SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett. 2010;288:75–85. doi:10.1016/j.canlet.2009.06.025.

    CAS  PubMed  Google Scholar 

  70. Li G, Xu J, Wang Z, Yuan Y, Li Y, Cai S, et al. Low expression of SOCS-1 and SOCS-3 is a poor prognostic indicator for gastric cancer patients. J Cancer Res Clin Oncol. 2015;141:443–52. doi:10.1007/s00432-014-1838-5.

    CAS  PubMed  Google Scholar 

  71. Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 2003;5:1001–7. doi:10.1038/ncb1056.

    CAS  PubMed  Google Scholar 

  72. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82. doi:10.1186/gb-2005-6-10-r82.

    PubMed  PubMed Central  Google Scholar 

  73. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50. doi:10.1016/j.molcel.2009.09.022.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol. 2012;590(Pt 3):421–32. doi:10.1113/jphysiol.2011.220681.

    CAS  PubMed  Google Scholar 

  75. Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T, et al. SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2014;33:75. doi:10.1186/s13046-014-0075-8.

    PubMed  PubMed Central  Google Scholar 

  76. Zeng Q, Zhang L, Wang B, Ou CY, Chien CT, Jiang J. A Hedgehog-induced BTB protein modulates Hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell. 2006;10:710–29. doi:10.1016/j.devcel.2006.05.004.

    Google Scholar 

  77. Kim MS, Je EM, Oh JE, Yoo NJ, Lee SH. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS. 2013;121:626–33. doi:10.1111/apm.12030.

    CAS  PubMed  Google Scholar 

  78. Lee J, Zhou P. Pathogenic role of the CRL4 ubiquitin ligase in human disease. Front Oncol. 2012;2:21. doi:10.3389/fonc.2012.00021.

    PubMed  PubMed Central  Google Scholar 

  79. Kerzendorfer C, Whibley A, Carpenter G, Outwin E, Chiang SC, Turner G, et al. Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks. Hum Mol Genet. 2010;19:1324–34. doi:10.1093/hmg/ddq008.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kerzendorfer C, Hart L, Colnaghi R, Carpenter G, Alcantara D, Outwin E, et al. CUL4B-deficiency in humans: understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mech Ageing Dev. 2011;132:366–73. doi:10.1016/j.mad.2011.02.003.

    CAS  PubMed  Google Scholar 

  81. Hannah J, Zhou PB. The CUL4A ubiquitin ligase is a potential therapeutic target in skin cancer and other malignancies. Chin J Cancer. 2013;32:478–82. doi:10.5732/cjc.012.10279.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hung MS, Mao JH, Xu Z, Yang CT, Yu JS, Harvard C, et al. Cul4A is an oncogene in malignant pleural mesothelioma. J Cell Mol Med. 2011;15:350–8. doi:10.1111/j.1582-4934.2009.00971.x.

    CAS  PubMed  Google Scholar 

  83. Xu Y, Wang Y, Ma G, Wang Q, Wei G. CUL4A is overexpressed in human pituitary adenomas and regulates pituitary tumor cell proliferation. J Neurooncol. 2014;116:625–32. doi:10.1007/s11060-013-1349-2.

    CAS  PubMed  Google Scholar 

  84. Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P, et al. CUL4A induces epithelial-mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74:520–31. doi:10.1158/0008-5472.CAN-13-2182.

    CAS  PubMed  Google Scholar 

  85. Wang Y, Ma G, Wang Q, Wen M, Xu Y, He X, et al. Involvement of CUL4A in regulation of multidrug resistance to P-gp substrate drugs in breast cancer cells. Molecules. 2013;19:159–76. doi:10.3390/molecules19010159.

    PubMed  Google Scholar 

  86. Ren S, Xu C, Cui Z, Yu Y, Xu W, Wang F, et al. Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med (Berl). 2012;90:1121–32. doi:10.1007/s00109-012-0885-0.

    CAS  Google Scholar 

  87. Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem. 2014;390:93–100. doi:10.1007/s11010-014-1960-3.

    CAS  PubMed  Google Scholar 

  88. Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80. doi:10.1016/j.molcel.2007.06.001.

    CAS  PubMed  Google Scholar 

  89. Banks D, Wu M, Higa LA, Gavrilova N, Quan J, Ye T, et al. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle. 2014;5:1719–29. doi:10.4161/cc.5.15.3150.

    Google Scholar 

  90. Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts. 2014;5:9–19. doi:10.1515/bmc-2013-0027.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nag A, Bagchi S, Raychaudhuri P. Cul4A physically associates with MDM2 and participates in the proteolysis of p53. Cancer Res. 2004;64:8152–5. doi:10.1158/0008-5472.CAN-04-2598.

    CAS  PubMed  Google Scholar 

  92. Shen W, Hu P, Cao JQ, Liu XX, Shao JH. MDM2 oncogene, E3 ubiquitin protein ligase T309G polymorphism and risk of oesophageal or gastric cancer: meta-analysis of 15 studies. J Int Med Res. 2014;42:1065–76. doi:10.1177/0300060514527910.

    PubMed  Google Scholar 

  93. Li YF, Wang DD, Zhao BW, Wang W, Huang CY, Chen YM, et al. High level of COP1 expression is associated with poor prognosis in primary gastric cancer. Int J Biol Sci. 2012;8:1168–77. doi:10.7150/ijbs.4778.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, et al. Loss of COP1 expression determines poor prognosis in patients with gastric cancer. Oncol Rep. 2013;30:1971–5. doi:10.3892/or.2013.2664.

    CAS  PubMed  Google Scholar 

  95. Jackson PK. Regulating microtubules and genome stability via the CUL7/3M syndrome complex and CUL9. Mol Cell. 2014;54:713–5. doi:10.1016/j.molcel.2014.05.024.

    CAS  PubMed  Google Scholar 

  96. Guo H, Wu F, Wang Y, Yan C, Su W. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53. Biochem Biophys Res Commun. 2014;450:1370–6. doi:10.1016/j.bbrc.2014.06.134.

    CAS  PubMed  Google Scholar 

  97. Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 2008;30:403–14. doi:10.1016/j.molcel.2008.03.009.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuo KL, Ho IL, Shih TH, Wu JT, Lin WC, Tsai YC, et al. MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies. Cancer Lett. 2015;363:127–36. doi:10.1016/j.canlet.2015.01.015.

    CAS  PubMed  Google Scholar 

  99. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6. doi:10.1038/nature07884.

    CAS  PubMed  Google Scholar 

  100. Arias EE, Walter JC. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 2005;19:114–26. doi:10.1101/gad.1255805.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 2003;278:30854–8. doi:10.1074/jbc.C300251200.

    CAS  PubMed  Google Scholar 

  102. Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A. CRL1-FBXO11 promotes Cdt2 ubiquitination and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013;49:1147–58. doi:10.1016/j.molcel.2013.02.003.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Dong Yao.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Yao, GD. The role of cullin proteins in gastric cancer. Tumor Biol. 37, 29–37 (2016). https://doi.org/10.1007/s13277-015-4154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4154-z

Keywords

Navigation