Skip to main content

Advertisement

Log in

An orally administered DNA vaccine targeting vascular endothelial growth factor receptor-3 inhibits lung carcinoma growth

  • Original Article
  • Published:
Tumor Biology

Abstract

Lung cancer is the leading cause of mortality and 5-year survival rate is very low worldwide. Recent studies show that vascular endothelial growth factor receptor-3 (VEGFR-3) signaling pathway contributes to lung cancer progression. So we hypothesize that an oral DNA vaccine that targets VEGFR-3 carried by attenuated Salmonella enterica serovar typhimurium strain SL3261 has impacts on lung cancer progression. In this study, the oral VEGFR-3-based vaccine-immunized mice showed appreciable inhibition of tumor growth and tumor lymphatic microvessels in lung cancer mice model. Moreover, the oral VEGFR-3-based vaccine-immunized mice showed remarkable increases in both VEGFR-3-specific antibody levels and cytotoxic activity. Furthermore, the oral VEGFR-3-based vaccine-immunized mice showed a significant increase in the levels of T helper type 1 (Th1) cell intracellular cytokine expression (IL-2, IFN-γ, and TNF-α). After inoculation with murine Lewis lung carcinoma (LLC) cells, CD4+ or CD8+ T cell numbers obviously declined in control groups whereas high levels were maintained in the oral VEGFR-3-based vaccine group. These results demonstrated that the oral VEGFR-3-based vaccine could induce specific humoral and cellular immune responses and then significantly inhibit lung carcinoma growth via suppressing lymphangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  2. Lee WS, Pyun BJ, Kim SW, Shim SR, Nam JR, Yoo JY, et al. TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis. MAbs. 2015;7(5):957–68. doi:10.1080/19420862.2015.1045168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuo SG, Chen Y, Wu ZP, Liu X, Liu C, Zhou YC, et al. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol Pharm Bull. 2010;33(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  4. Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484(7392):110–4. doi:10.1038/nature10908.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou HJ, Chen X, Huang Q, Liu R, Zhang H, Wang Y, et al. AIP1 mediates vascular endothelial cell growth factor receptor-3-dependent angiogenic and lymphangiogenic responses. Arterioscler Thromb Vasc Biol. 2014;34(3):603–15. doi:10.1161/ATVBAHA.113.303053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9(3):209–23. doi:10.1016/j.ccr.2006.02.018.

    Article  CAS  PubMed  Google Scholar 

  7. Khromova N, Kopnin P, Rybko V, Kopnin BP. Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene. 2012;31(11):1389–97. doi:10.1038/onc.2011.330.

    Article  CAS  PubMed  Google Scholar 

  8. Varney ML, Singh RK. VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am J Cancer Res. 2015;5(2):616–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M, et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319–31. doi:10.1038/cr.2010.116.

    Article  CAS  PubMed  Google Scholar 

  10. Chen F, Takenaka K, Ogawa E, Yanagihara K, Otake Y, Wada H, et al. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(24):8548–53. doi:10.1158/1078-0432.CCR-04-0950.

    Article  CAS  Google Scholar 

  11. Kojima H, Shijubo N, Yamada G, Ichimiya S, Abe S, Satoh M, et al. Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer. 2005;104(8):1668–77. doi:10.1002/cncr.21366.

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Yi H, Liu Z, Zhang H, Zhang D, Yue W, et al. Association between VEGFR-3 expression and lymph node metastasis in non-small-cell lung cancer. Exp Ther Med. 2015;9(2):389–94. doi:10.3892/etm.2014.2091.

    CAS  PubMed  Google Scholar 

  13. Yang H, Kim C, Kim MJ, Schwendener RA, Alitalo K, Heston W, et al. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer. 2011;10:36. doi:10.1186/1476-4598-10-36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Decio A, Taraboletti G, Patton V, Alzani R, Perego P, Fruscio R, et al. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am J Pathol. 2014;184(4):1050–61. doi:10.1016/j.ajpath.2013.12.030.

    Article  CAS  PubMed  Google Scholar 

  15. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. MicroRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50(13):2336–50. doi:10.1016/j.ejca.2014.06.005.

    Article  CAS  PubMed  Google Scholar 

  16. Chang YW, Su CM, Su YH, Ho YS, Lai HH, Chen HA, et al. Novel peptides suppress VEGFR-3 activity and antagonize VEGFR-3-mediated oncogenic effects. Oncotarget. 2014;5(11):3823–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(23):5964–75. doi:10.1158/1078-0432.CCR-14-0059.

    Article  CAS  Google Scholar 

  18. Lowe DB, Shearer MH, Kennedy RC. DNA vaccines: successes and limitations in cancer and infectious disease. J Cell Biochem. 2006;98(2):235–42. doi:10.1002/jcb.20775.

    Article  CAS  PubMed  Google Scholar 

  19. Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouellec A. Live-attenuated bacteria as a cancer vaccine vector. Exp Rev Vaccines. 2013;12(10):1139–54. doi:10.1586/14760584.2013.836914.

    Article  CAS  Google Scholar 

  20. Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol. 2010;22(3):183–9. doi:10.1016/j.smim.2010.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grille S, Moreno M, Bascuas T, Marques JM, Munoz N, Lens D, et al. Salmonella enterica serovar Typhimurium immunotherapy for B-cell lymphoma induces broad anti-tumour immunity with therapeutic effect. Immunology. 2014;143(3):428–37. doi:10.1111/imm.12320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garmory HS, Griffin KF, Brown KA, Titball RW. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague. Vaccine. 2003;21(21–22):3051–7.

    Article  CAS  PubMed  Google Scholar 

  23. Liu XF, Hu JL, Quan QZ, Sun ZQ, Wang YJ, Qi F. Systemic immune responses to oral administration of recombinant attenuated Salmonella typhimurium expressing Helicobacter pylori urease in mice. World J Gastroenterol WJG. 2005;11(14):2154–6.

    Article  CAS  PubMed  Google Scholar 

  24. Jellbauer S, Panthel K, Hetrodt JH, Russmann H. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One. 2012;7(4):e34214. doi:10.1371/journal.pone.0034214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong G, Husseiny MI, Song L, Erdreich-Epstein A, Shackleford GM, Seeger RC, et al. Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int J Cancer J Int Cancer. 2010;126(11):2622–34. doi:10.1002/ijc.24957.

    CAS  Google Scholar 

  26. Dong J, Yang J, Chen MQ, Wang XC, Wu ZP, Chen Y, et al. A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther. 2008;7(4):502–9.

    Article  CAS  PubMed  Google Scholar 

  27. Reisfeld RA, Niethammer AG, Luo Y, Xiang R. DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev. 2004;199:181–90. doi:10.1111/j.0105-2896.2004.00137.x.

    Article  CAS  PubMed  Google Scholar 

  28. Yi AK, Yoon JG, Hong SC, Redford TW, Krieg AM. Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-alpha production through activation of NF-kappaB. Int Immunol. 2001;13(11):1391–404.

    Article  CAS  PubMed  Google Scholar 

  29. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80. doi:10.1038/90609.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Cai J, Huang J, Jiang X, Ren D. The treatment and prevention of mouse melanoma with an oral DNA vaccine carried by attenuated Salmonella typhimurium. J Immunother. 2010;33(5):453–60. doi:10.1097/CJI.0b013e3181cf23a6.

    Article  CAS  PubMed  Google Scholar 

  31. Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M, et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 2005;65(2):553–61.

    CAS  PubMed  Google Scholar 

  32. Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8(12):1369–75. doi:10.1038/nm794.

    Article  CAS  PubMed  Google Scholar 

  33. Kurenova EV, Hunt DL, He D, Fu AD, Massoll NA, Golubovskaya VM, et al. Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo. Cell Cycle. 2009;8(14):2266–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454(7204):656–60. doi:10.1038/nature07083.

    Article  CAS  PubMed  Google Scholar 

  35. Shimizu K, Kubo H, Yamaguchi K, Kawashima K, Ueda Y, Matsuo K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci. 2004;95(4):328–33.

    Article  CAS  PubMed  Google Scholar 

  36. Su JL, Chen PS, Chien MH, Chen PB, Chen YH, Lai CC, et al. Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer Cell. 2008;13(6):557–60. doi:10.1016/j.ccr.2008.04.021.

    Article  CAS  PubMed  Google Scholar 

  37. Petrova TV, Bono P, Holnthoner W, Chesnes J, Pytowski B, Sihto H, et al. VEGFR-3 expression is restricted to blood and lymphatic vessels in solid tumors. Cancer Cell. 2008;13(6):554–6. doi:10.1016/j.ccr.2008.04.022.

    Article  CAS  PubMed  Google Scholar 

  38. Longatto Filho A, Martins A, Costa SM, Schmitt FC. VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathol Res Pract. 2005;201(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  39. Bogos K, Renyi-Vamos F, Dobos J, Kenessey I, Tovari J, Timar J, et al. High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(5):1741–6. doi:10.1158/1078-0432.CCR-08-1372.

    Article  CAS  Google Scholar 

  40. Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732–9. doi:10.1021/acs.nanolett.5b00570.

    Article  CAS  PubMed  Google Scholar 

  41. Nakashima H, Terabe M, Berzofsky JA, Husain SR, Puri RK. A novel combination immunotherapy for cancer by IL-13Ralpha2-targeted DNA vaccine and immunotoxin in murine tumor models. J Immunol. 2011;187(10):4935–46. doi:10.4049/jimmunol.1102095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Disis ML. Immune regulation of cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):4531–8. doi:10.1200/JCO.2009.27.2146.

    Article  CAS  Google Scholar 

  43. Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev. 2013;252(1):164–82. doi:10.1111/imr.12039.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (No. 81460358, No. 81060177, No. 81460441), the Joint Special Funds for the Department of Science and Technology of Yunnan Province-Kunming Medical University (No. 2012FB067), and the Yunnan Provincial Technology Project of Health (No. 2012WS0041, No. 2014NS024).

Compliance with ethical standards

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Cai Wang.

Additional information

Yan Chen and Xin Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The recombinant vector pcDNA3.1-VR-3 was successfully constructed, and verified by DNA sequencing and Western blotting. (a) DNA encoding VEGFR-3 extracellular domain was inserted into pcDNA3.1 vector between the restriction sites HindIII and XbaI and confirmed by DNA sequencing. DNA sequencing data showed that the recombinant gene matched the sequence in GenBank. (b) COS-7 cells were transiently transfected with the recombinant pcDNA3.1-VR-3 and the pcDNA3.1 empty vector respectively. Recombinant VEGFR-3 protein expression was confirmed by Western blotting in cell lysates at 24 h and 72 h after transfection. The protein appeared at approximately 180 kD. (GIF 61 kb)

High resolution image (TIFF 7068 kb)

Fig. S2

Attenuated S. typhimurium SL3261 can infect macrophage cell line Ana-1 in vitro, and disseminate from the gut to other parts of body. (a) Fluorescence and optical microscopic images of Ana-1 cells in vitro co-incubated with EGFP-expressing SL3261 or negative control cells (NTC) without any treatment. 24 h after co-incubation, cells were detected by inverted fluorescence microscopy. Both panels, ×200 magnification. (b) C57BL/6 J mice were immunized 3 times at 2-weeks intervals by oral administration of 108 CFU of SL3261 harboring pEGFP-C2 or saline. Mice were sacrificed 4 h, 8 h or 96 h after the last immunization. The percentage of EGFP-expressing cells derived from small intestine, liver and spleen were detected by flow cytometry (n = 3 per time point). Error bars indicate S.D. (GIF 107 kb)

High resolution image (TIFF 16038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, X., Jin, C.G. et al. An orally administered DNA vaccine targeting vascular endothelial growth factor receptor-3 inhibits lung carcinoma growth. Tumor Biol. 37, 2395–2404 (2016). https://doi.org/10.1007/s13277-015-4061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4061-3

Keywords

Navigation