Skip to main content

Advertisement

Log in

Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Although zinc transporters were shown to play roles in the development of prostate, bladder, and renal cancer, no study has evaluated the genetic variants in zinc transporter genes with risk of urological cancers. A candidate gene association study using genome-wide association study (GWAS) datasets was conducted for variants in 24 zinc transporter genes. Genotypes were analyzed using logistic regression models adjusted for covariates. The function of identified variants was assessed by using the Encyclopedia of DNA Elements (ENCODE). We further evaluated tumors for somatic change of the implicated gene(s) and the associations between identified variants and patient survival from data in The Cancer Genome Atlas (TCGA). A ZIP11 variant, rs8081059, was significantly associated with increased risk of renal cell carcinoma (odds ratios (OR) = 1.28, 95 % confidence intervals (CI) (1.13–1.45), p = 0.049). No zinc transporter variants were associated with prostate cancer risk. Four variants within ZIP11 were significantly associated with bladder cancer risk: rs11871756 (OR = 1.43, 95 % CI (1.24–1.63), p = 0.0002), rs11077654 (OR = 0.76, 95 % CI (0.68–0.85), p = 0.001), rs9913017 (OR = 0.76, 95 % CI (0.68–0.85), p = 0.002), and rs4969054 (OR = 0.78, 95 % CI (0.69–0.88), p = 0.02); the three protective variants were co-located and highly correlated. These variants were located within predicted transcribed or enhancer regions. Among the 253 bladder cancer patients in TCGA, two had tumors that contained deleterious missense mutations in ZIP11. Moreover, rs11077654 was significantly associated with survival of bladder cancer patients (p = 0.046). In conclusion, zinc transporter gene, ZIP11, may play an important role in bladder cancer. Further studies of the gene are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86:521–34.

    Article  CAS  PubMed  Google Scholar 

  2. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151–72.

    Article  CAS  PubMed  Google Scholar 

  3. Lichten LA, Cousins RJ. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009;29:153–76.

    Article  PubMed  Google Scholar 

  4. Kolenko V, Teper E, Kutikov A, Uzzo R. Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol. 2013;10:219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gumulec J, Masarik M, Krizkova S, Adam V, Hubalek J, Hrabeta J, et al. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem. 2011;18:5041–51.

    Article  CAS  PubMed  Google Scholar 

  6. Lue HW, Yang X, Wang R, Qian W, Xu RZ, Lyles R, et al. Liv-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One. 2011;6, e27720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costello LC, Franklin RB, Zou J, Feng P, Bok R, Mark GS, et al. Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther. 2011;12:1078–84.

  8. Chen QG, Zhang Z, Yang Q, Shan GY, Yu XY, Kong CZ. The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol. 2012;30:906–11.

  9. Tepaamorndech S, Huang L, Kirschke CP. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 2011;308:33–42.

    Article  CAS  PubMed  Google Scholar 

  10. Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P, et al. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem. 2003;96:435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henshall SM, Afar DE, Rasiah KK, Horvath LG, Gish K, Caras I, et al. Expression of the zinc transporter Znt4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene. 2003;22:6005–12.

    Article  CAS  PubMed  Google Scholar 

  12. Rishi I, Baidouri H, Abbasi JA, Bullard-Dillard R, Kajdacsy-Balla A, Pestaner JP, et al. Prostate cancer in African American men is associated with downregulation of zinc transporters. Appl Immunohistochem Mol Morphol. 2003;11:253–60.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Ebraheem A, Farquharson MJ, Ryan E. The evaluation of biologically important trace metals in liver, kidney and breast tissue. Appl Radiat Isot. 2009;67:470–4.

    Article  CAS  PubMed  Google Scholar 

  14. Feustel A, Wennrich R. Zinc and cadmium plasma and erythrocyte levels in prostatic carcinoma, BPH, urological malignancies, and inflammations. Prostate. 1986;8:75–9.

    Article  CAS  PubMed  Google Scholar 

  15. Nemoto K, Kondo Y, Himeno S, Suzuki Y, Hara S, Akimoto M, et al. Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem Pharmacol. 2000;59:401–5.

    Article  CAS  PubMed  Google Scholar 

  16. Melichar B, Malir F, Jandik P, Malirova E, Vavrova J, Mergancova J, et al. Increased urinary zinc excretion in cancer patients is linked to immune activation and renal tubular cell dysfunction. Biometals. 1995;8:205–8.

    Article  CAS  PubMed  Google Scholar 

  17. Hardell L, Wing AM, Ljungberg B, Dreifaldt AC, Degerman A, Halmans G. Levels of cadmium, zinc and copper in renal cell carcinoma and normal kidney. Eur J Cancer Prev. 1994;3:45–8.

    Article  CAS  PubMed  Google Scholar 

  18. Feustel A, Wennrich R, Dittrich M. Studies of Cd, Zn and Cu levels in human kidney tumours and normal kidney. Urol Res. 1986;14:105–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sanada S, Ogura K, Kiriyama T, Yoshida O. [Serum copper and zinc levels in patients with malignant neoplasm of the urogenital tract]. Hinyokika Kiyo. 1985;31:1299–316.

    CAS  PubMed  Google Scholar 

  20. Karcioglu ZA, Sarper RM, Van Rinsvelt HA, Guffey JA, Fink RW. Trace element concentrations in renal cell carcinoma. Cancer. 1978;42:1330–40.

    Article  CAS  PubMed  Google Scholar 

  21. Mazdak H, Yazdekhasti F, Movahedian A, Mirkheshti N, Shafieian M. The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol. 2010;42:89–93.

    Article  CAS  PubMed  Google Scholar 

  22. Konukoglu D, Akcay T, Celik C, Erozenci A. Urinary zinc levels in patients with superficial bladder cancer. J Basic Clin Physiol Pharmacol. 1996;7:115–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kamat AM, Lamm DL. Diet and nutrition in urologic cancer. W V Med J. 2000;96:449–54.

    CAS  PubMed  Google Scholar 

  24. Lin CN, Wang LH, Shen KH. Determining urinary trace elements (Cu, Zn, Pb, As, and Se) in patients with bladder cancer. J Clin Lab Anal. 2009;23:192–5.

    Article  CAS  PubMed  Google Scholar 

  25. Kamat AM, Lamm DL. Chemoprevention of urological cancer. J Urol. 1999;161:1748–60.

    Article  CAS  PubMed  Google Scholar 

  26. Wu L, Goldstein AM, Yu K, Yang XR, Rabe KG, Arslan AA, et al. Variants associated with susceptibility to pancreatic cancer and melanoma do not reciprocally affect risk. Cancer Epidemiol Biomarkers Prev. 2014;23:1121–4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singer JB. Candidate gene association analysis. Methods Mol Biol. 2009;573:223–30.

    Article  CAS  PubMed  Google Scholar 

  28. The Cancer Genome Atlas Data Portal. https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Accessed 16 Nov 2014.

  29. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet. 2010;42:978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43:60–5.

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Rabe KG, Petersen GM. Do variants associated with susceptibility to pancreatic cancer and type 2 diabetes reciprocally affect risk? PLoS One. 2015;10, e0117230.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138:963–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010;467:1061–73.

  36. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  37. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods. 2012;9:473–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. ENCODE Chromatin State Segmentation by HMM from Broad Institute, MIT and MGH. http://moma.ki.au.dk/genome-mirror/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeBroadHmm. Accessed 23 Jan 2015.

  40. Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011;21:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat Genet. 2014;46:886–90.

  42. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507:315–22.

  43. Wu L, Schaid DJ, Sicotte H, Wieben ED, Li H, Petersen GM. Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. J Med Genet. 2015;52:10–6.

  44. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  45. Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X. Report of cancer incidence and mortality in China, 2010. Ann Transl Med. 2014;2:61.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu Y, Wu A, Zhang Z, Yan G, Zhang F, Zhang L, et al. Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. J Nutr Biochem. 2013;24:1697–708.

    Article  CAS  PubMed  Google Scholar 

  47. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the dataset contributors and participants in the prostate, bladder, and renal cell carcinoma case-control studies. We also thank dbGaP for providing access to the datasets (dbGaP Study Accession: phs000207.v1.p1, phs000346.v1.p1, and phs000351.v1.p1). This publication was made possible by CTSA Grant Number UL1 TR000135 from the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH) as well as Mayo Graduate School fellowship. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria M. Petersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Chaffee, K.G., Parker, A.S. et al. Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumor Biol. 36, 7431–7437 (2015). https://doi.org/10.1007/s13277-015-3459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3459-2

Keywords

Navigation