Skip to main content

Advertisement

Log in

SOX 1, contrary to SOX 2, suppresses proliferation, migration, and invasion in human laryngeal squamous cell carcinoma by inhibiting the Wnt/β-catenin pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Sex-determining region Y (SRY)-box protein 1 (SOX 1) has been reported to have the inhibiting effects on various cancer cells; however, the expression and effect of SOX 1 on laryngeal squamous cell carcinoma (LSCC) have not been determined. Therefore, the aim of this study was to assess the anti-proliferation and metastatic effects of SOX 1 and its related mechanisms on LSCC. According to our present study, first, we found that overexpression of SOX 1 could significantly inhibit proliferation and promote apoptosis in Tu212 cells. Additionally, overexpression of SOX 1 suppressed the migration and invasion potential of Tu212 cells via regulating Wnt/β-catenin pathway. Finally, we demonstrated for the first time that overexpression of SOX 1 could downregulate the expression of SOX 2, and co-expression of SOX 1 and SOX 2 could reverse the anti-tumor effect of SOX 1. In conclusion, our studies suggested that SOX 1 suppressed cell growth and invasion in Tu212 cells by inhibiting Wnt/β-catenin pathway, and the anti-tumor effect of SOX 1 could be weakened by SOX 2, which may be a potential molecular basis for clinical treatment of LSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter KD, Parkinson EK, Harrison PR. Profiling early head and neck cancer. Nat Rev Cancer. 2005;5:127–35.

    Article  CAS  PubMed  Google Scholar 

  2. Wu H, Liu T, Wang R, Tian S, Liu M, Li X, et al. Microrna-16 targets zyxin and promotes cell motility in human laryngeal carcinoma cell line HEp-2. IUBMB Life. 2011;63:101–8.

    CAS  PubMed  Google Scholar 

  3. Fleskens SA, van der Laak JA, Slootweg PJ, Takes RP. Management of laryngeal premalignant lesions in The Netherlands. Laryngoscope. 2010;120:1326–35.

    Article  PubMed  Google Scholar 

  4. Ren J, Zhu D, Liu M, Sun Y, Tian L. Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of laryngeal squamous cell carcinoma. Eur J Cancer. 2010;46:3409–16.

    Article  CAS  PubMed  Google Scholar 

  5. Cosetti M, Yu GP, Schantz SP. Five-year survival rates and time trends of laryngeal cancer in the US population. Arch Otolaryngol Head Neck Surg. 2008;134:370–9.

    Article  PubMed  Google Scholar 

  6. Hu Y, Liu H. Diagnostic variability of laryngeal premalignant lesions: histological evaluation and carcinoma transformation. Otolaryngol Head Neck Surg. 2014;150:401–6.

    Article  PubMed  Google Scholar 

  7. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346:245–50.

    Article  CAS  PubMed  Google Scholar 

  8. Chew LJ, Gallo V. The Yin and Yang of Sox proteins: activation and repression in development and disease. J Neurosci Res. 2009;87:3277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y. Sox2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer. 2008;98:824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian T, Zhang Y, Wang S, Zhou J, Xu S. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer. J Biomed Res. 2012;26:336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsuoka J, Yashiro M, Sakurai K, Kubo N, Tanaka H, Muguruma K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res. 2012;174:130–5.

    Article  CAS  PubMed  Google Scholar 

  12. Lin YW, Tsao CM, Yu PN, Shih YL, Lin CH, Yan MD. Sox1 suppresses cell growth and invasion in cervical cancer. Gynecol Oncol. 2013;131:174–81.

    Article  CAS  PubMed  Google Scholar 

  13. Tsao CM, Yan MD, Shih YL, Yu PN, Kuo CC, Lin WC, et al. Sox1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Hepatology. 2012;56:2277–87.

    Article  CAS  PubMed  Google Scholar 

  14. Chang CC, Huang RL, Wang HC, Liao YP, Yu MH, Lai HC. High methylation rate of LMX1A, NKX6-1, PAX1, PTPRR, SOX1, AND ZNF582 genes in cervical adenocarcinoma. Int J Gynecol Cancer. 2014;24:201–9.

    Article  PubMed  Google Scholar 

  15. Shih YL, Hsieh CB, Yan MD, Tsao CM, Hsieh TY, Liu CH, et al. Frequent concomitant epigenetic silencing of SOX1 and secreted frizzled-related proteins (SFRPS) in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28:551–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yang N, Hui L, Wang Y, Yang H, Jiang X. Sox2 promotes the migration and invasion of laryngeal cancer cells by induction of MMP-2 via the PI3K/Akt/mTOR pathway. Oncol Rep. 2014;31:2651–9.

    CAS  PubMed  Google Scholar 

  17. Yang N, Hui L, Wang Y, Yang H, Jiang X. Overexpression of SOX2 promotes migration, invasion, and epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in laryngeal cancer Hep-2 cells. Tumour Biol. 2014;35:7965–73.

    Article  CAS  PubMed  Google Scholar 

  18. Castillo SD, Sanchez-Cespedes M. The SOX family of genes in cancer development: biological relevance and opportunities for therapy. Expert Opin Ther Targets. 2012;16:903–19.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang S, Li S, Gao JL. Promoter methylation status of the tumor suppressor gene SOX11 is associated with cell growth and invasion in nasopharyngeal carcinoma. Cancer Cell Int. 2013;13:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li JY, Han C, Zheng LL, Guo MZ. Epigenetic regulation of Wnt signaling pathway gene SRY-related Hmg-box 17 in papillary thyroid carcinoma. Chin Med J (Engl). 2012;125:3526–31.

    CAS  Google Scholar 

  21. Chan DW, Mak CS, Leung TH, Chan KK, Ngan HY. Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget. 2012;3:1546–56.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lai HC, Lin YW, Huang TH, Yan P, Huang RL, Wang HC, et al. Identification of novel DNA methylation markers in cervical cancer. Int J Cancer. 2008;123:161–7.

    Article  CAS  PubMed  Google Scholar 

  23. Su HY, Lai HC, Lin YW, Chou YC, Liu CY, Yu MH. An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int J Cancer. 2009;124:387–93.

    Article  CAS  PubMed  Google Scholar 

  24. Vural B, Chen LC, Saip P, Chen YT, Ustuner Z, Gonen M, et al. Frequency of SOX group b (SOX1, 2, 3) and ZIC2 antibodies in Turkish patients with small cell lung carcinoma and their correlation with clinical parameters. Cancer. 2005;103:2575–83.

    Article  CAS  PubMed  Google Scholar 

  25. Eom BW, Jo MJ, Kook MC, Ryu KW, Choi IJ, Nam BH, et al. The lymphangiogenic factor SOX 18: a key indicator to stage gastric tumor progression. Int J Cancer. 2012;131:41–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sun M, Uozaki H, Hino R, Kunita A, Shinozaki A, Ushiku T, et al. SOX9 expression and its methylation status in gastric cancer. Virchows Arch. 2012;460:271–9.

    Article  CAS  PubMed  Google Scholar 

  27. Vervoort SJ, van Boxtel R, Coffer PJ. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene. 2013;32:3397–409.

    Article  CAS  PubMed  Google Scholar 

  28. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC. No difference in the occurrence of mismatch repair defects and APC and CTNNB1 genes mutation in a multi-racial colorectal carcinoma patient cohort. Pathology. 2007;39:228–34.

    Article  CAS  PubMed  Google Scholar 

  29. Bryja V, Cajanek L, Grahn A, Schulte G. Inhibition of endocytosis blocks Wnt signalling to beta-catenin by promoting dishevelled degradation. Acta Physiol (Oxf). 2007;190:55–61.

    Article  CAS  Google Scholar 

  30. Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene. 2002;21:6598–605.

    Article  CAS  PubMed  Google Scholar 

  31. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883–91.

    Article  CAS  PubMed  Google Scholar 

  32. Marchenko GN, Marchenko ND, Leng J, Strongin AY. Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem J. 2002;363:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kapoor A, Li HJ, Leiter AB. Intestinal development: the many faces of Wnt signaling. Gastroenterology. 2007;133:710–2.

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Chen Y, Olopade OI. Myc and breast cancer. Genes Cancer. 2010;1:629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mega S, Miyamoto M, Ebihara Y, Takahashi R, Hase R, Li L, et al. Cyclin d1, E2F1 expression levels are associated with characteristics and prognosis of esophageal squamous cell carcinoma. Dis Esophagus. 2005;18:109–13.

    Article  CAS  PubMed  Google Scholar 

  37. Mauro L, Pellegrino M, Giordano F, Ricchio E, Rizza P, De Amicis F, Catalano S, Bonofiglio D, Panno ML, Ando S: Estrogen receptor-alpha drives adiponectin effects on cyclin d1 expression in breast cancer cells. FASEB J 2015.

  38. Mishra R, Nagini S, Rana A. Expression and inactivation of glycogen synthase kinase 3 alpha/beta and their association with the expression of cyclin d1 and p53 in oral squamous cell carcinoma progression. Mol Cancer. 2015;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wright EM, Snopek B, Koopman P. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res. 1993;21:744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Natural Science Foundation of Liaoning Province (No.: 201202287).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Wang, Y., Hui, L. et al. SOX 1, contrary to SOX 2, suppresses proliferation, migration, and invasion in human laryngeal squamous cell carcinoma by inhibiting the Wnt/β-catenin pathway. Tumor Biol. 36, 8625–8635 (2015). https://doi.org/10.1007/s13277-015-3389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3389-z

Keywords

Navigation