Skip to main content
Log in

MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs of 19–25 nt that can regulate gene expression at a posttranscriptional level. Increasing evidence indicates that miRNAs participate in almost every step of cellular processes and are often aberrantly expressed in human cancer. The aim of this study was to investigate the functional significance of miR-191 and to identify its possible target genes in osteosarcoma cells. Here, we found that the expression level of miR-191 was increased in osteosarcoma tissues in comparison with the adjacent normal tissues. The enforced expression of miR-191 was able to promote cell proliferation in Saos-2 and MG62 cells, while miR-191 antisense oligonucleotides blocked cell proliferation. At the molecular level, our results further revealed that expression of tumor suppressor gene, checkpoint kinase 2, was negatively regulated by miR-191. Therefore, we consider that miR-191 act as an onco-MicroRNA for osteosarcoma and it would offer a new way in molecular targeting cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  3. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.

    Article  CAS  PubMed  Google Scholar 

  4. Bert SA et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell. 2013;23:9–22.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao G et al. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One. 2013;8:e53906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song B et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, et al. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388:35–40.

    Article  CAS  PubMed  Google Scholar 

  8. Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, et al. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem. 2012;30:1481–90.

    Article  CAS  PubMed  Google Scholar 

  9. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, et al. Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2006;2:113–21.

    PubMed  Google Scholar 

  10. Garzon R et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111:3183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kent OA et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther. 2009;8:2013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patnaik SK, Kannisto E, Yendamuri S. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype. PLoS One. 2010;5:e9219.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hauser S et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 2012;36:391–4.

    Article  CAS  PubMed  Google Scholar 

  14. He Y, Cui Y, Wang W, Gu J, Guo S, Ma K, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 2011;13:841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagpal N, Ahmad HM, Molparia B, Kulshreshtha R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L et al. Association of a genetic variation in a miR-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLoS One. 2013;8:e64331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell. 2012;21:517–31.

    Article  CAS  PubMed  Google Scholar 

  18. Antoni L, Sodha N, Collins I, Garrett MD. CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat Rev Cancer. 2007;7:925–36.

    Article  CAS  PubMed  Google Scholar 

  19. Suganuma M, Kawabe T, Hori H, Funabiki T, Okamoto T. Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res. 1999;59:5887–91.

    CAS  PubMed  Google Scholar 

  20. Falck J, Lukas C, Protopopova M, Lukas J, Selivanova G, Bartek J. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway. Oncogene. 2001;20:5503–10.

    Article  CAS  PubMed  Google Scholar 

  21. Yang S, Kuo C, Bisi JE, Kim MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol. 2002;4:865–70.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Poon RY. The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci. 2008;13:5016–29.

    CAS  PubMed  Google Scholar 

  23. Dong X et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003;72:270–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staalesen V et al. Alternative splicing and mutation status of CHEK2 in stage III breast cancer. Oncogene. 2004;23:8535–44.

    Article  CAS  PubMed  Google Scholar 

  25. Yang HW et al. Alternative splicing of CHEK2 and codeletion with NF2 promote chromosomal instability in meningioma. Neoplasia. 2012;14:20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller CW et al. Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Gene Chromosome Cancer. 2002;33:17–21.

    Article  CAS  Google Scholar 

  27. Mansour WY et al. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol. 2013;106:147–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YZ., Zhang, J., Shao, HY. et al. MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumor Biol. 36, 6095–6101 (2015). https://doi.org/10.1007/s13277-015-3290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3290-9

Keywords

Navigation