Skip to main content
Log in

Identification of potential erythrocyte phospholipid fatty acid biomarkers of advanced lung adenocarcinoma, squamous cell lung carcinoma, and small cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

New biomarkers for lung cancer would be valuable. Our aim was to analyze the fatty acid profiles of the main phospholipid species in erythrocytes from patients with advanced squamous cell lung carcinoma (SCC), lung adenocarcinoma (ADC), and small cell lung cancer (SCLC) and benign lung diseases (chronic obstructive pulmonary disease (COPD) and asthma) to determine the fatty acids that could be use as lung cancer markers. Twenty-eight, 18, 14, 16, and 15 patients with, respectively, SCC, ADC, SCLC, asthma, and COPD and 50 healthy subjects were enrolled in the study. Fatty acid profiles were investigated using gas chromatography/mass spectrometry followed by receiver operating characteristic (ROC) curve analysis. The fatty acid profiles changed significantly in the different pathologies analyzed. Based on the diagnostic yields and operating characteristics, the most significant fatty acids that might be used as biomarkers were as follows: ADC—arachidonic acid (20:4n6) in phosphatidylcholine and oleic acid (18:1n9) in phosphatidylethanolamine (PE); SCC—eicosapentaenoic acid (20:5n3) in PE and palmitic acid (16:0) in phosphatidylserine + phosphatidylinositol (PS+PI); SCLC—eicosadienoic acid (20:2n6) in PS+PI and lignoceric acid (24:0) in sphingomyelin. In conclusion, fatty acids from erythrocyte phospholipid species might serve as biomarkers in the diagnosis, and probably in other aspects related to clinical disease management, of ADC, SCC, and SCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monge-Corella M, García-Pérez J, Aragonés N, Pollán M, Pérez-Gómez B, López-Abente G. Lung cancer mortality in towns near paper, pulp and board industries in Spain: a point source pollution study. BMC Public Health. 2008;8:288–98.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  3. Becker S, Kortza L, Helmschrodt C, Thiery J, Ceglarek U. LC–MS-based metabolomics in the clinical laboratory. J Chromatogr B. 2012;883–884:68–75.

    Article  Google Scholar 

  4. Chen JH, Enloe BM, Fletcher CD, Cory DG, Singer S. Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat. J Am Chem Soc. 2001;123:9200–1.

    Article  CAS  PubMed  Google Scholar 

  5. An ZL, Chen YH, Zhang RP, Song YM, Sun JH, He JM, et al. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta. 2009;650:3–9.

    Article  Google Scholar 

  6. Chen Y, Ma Z, Li A, Li H, Wang B, Zhong J, et al. Metabolomic profiling of human serum in lung cancer patients using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J Cancer Res Clin Oncol. 2014. doi:10.1007/s00432-014-1846-5

  7. Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T, et al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011;71:6590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 2013;19:4983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pala V, Krogh V, Muti P, Chajes V, Riboli E, Micheli A, et al. Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst. 2001;93:1088–95.

    Article  CAS  PubMed  Google Scholar 

  10. Yeha CS, Wanga J-Y, Chenga T-L, Juan C-H, Wua C-H, Lin S-R. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by microarray-bioinformatics analysis. Cancer Lett. 2006;233:297–308.

    Article  Google Scholar 

  11. Mikirova N, Riordan HD, Jackson JA, Wong K, Miranda-Massari JR, González MJ. Erythrocyte membrane fatty acid composition in cancer patients. P R Health Sci J. 2004;23:107–13.

    PubMed  Google Scholar 

  12. Santos MT, Valles J, Marcus AJ, Safier LB, Broekman MJ, Islam N, et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest. 1991;87:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prisco D, Paniccia R, Coppo M, Filippini M, Francalanci I, Brunelli T, et al. Platelet activation and platelet lipid composition in pulmonary cancer. Prostaglandins Leukot Essent Fatty Acids. 1995;53:65–8.

    Article  CAS  PubMed  Google Scholar 

  14. Brittain JE, Mlinar KJ, Anderson CS, Orringer EP, Parise LV. Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction. J Clin Invest. 2001;107:1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hernández-Hernández A, Rodríguez MC, López-Revuelta A, Sánchez-Gallego JL, Shnyrov V, Llanillo M, et al. Alterations in erythrocyte membrane protein composition in advanced non-small cell lung cancer. Blood Cell Mol Dis. 2006;36:355–63.

    Article  Google Scholar 

  16. de Castro J, Hernández-Hernández A, Rodríguez MC, Llanillo M, Sánchez-Yagüe J. Comparison of changes in erythrocyte and platelet fatty acid composition and protein oxidation in advanced non-small cell lung cancer. Cancer Invest. 2006;24:339–45.

    Article  PubMed  Google Scholar 

  17. de Castro J, Hernández-Hernández A, Rodríguez MC, Sardina JL, Llanillo M, Sánchez-Yagüe J. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma. Platelets. 2007;18:43–51.

    Article  PubMed  Google Scholar 

  18. Koma Y, Onishi A, Matsuoka H, Oda N, Yokota N, Matsumoto Y, et al. Increased red blood cell distribution width associates with cancer stage and prognosis in patients with lung cancer. PLoS One. 2013;8:e80240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crawford JH, Chacko BK, Kevil CG, Patel RP. The red blood cell and vascular function in health and disease. Antioxid Redox Signal. 2004;6:992–9.

    Article  CAS  PubMed  Google Scholar 

  20. Altiay G, Ciftci A, Demir M, Kocak Z, Sut N, Tabakoglu E, et al. High plasma D-dimer level is associated with decreased survival in patients with lung cancer. Clin Oncol. 2007;19:494–8.

    Article  CAS  Google Scholar 

  21. de Castro J, Rodríguez MC, Martínez-Zorzano VS, Hernández-Hernández A, Llanillo M, Sánchez-Yagüe J. Erythrocyte and platelet phospholipid fatty acids as markers of advanced non-small cell lung cancer. Comparison with serum levels of sialic acid, TPS and Cyfra 21-1. Cancer Invest. 2008;26:407–18.

    Article  PubMed  Google Scholar 

  22. de Castro J, Rodríguez MC, Martínez-Zorzano VS, Llanillo M, Sánchez-Yagüe J. Platelet linoleic acid is a potential biomarker of advanced non-small cell lung cancer. Exp Mol Pathol. 2009;87:226–33.

    Article  PubMed  Google Scholar 

  23. de Castro J, Rodríguez MC, Martínez-Zorzano VS, Sánchez-Rodríguez P, Sánchez-Yagüe J. Erythrocyte fatty acids as potential biomarkers in diagnosis of advanced lung adenocarcinoma, lung squamous cell carcinoma and small cell lung cancer. Am J Clin Pathol. 2014;142:111–20.

    Article  PubMed  Google Scholar 

  24. Calikoglu M, Unlu A, Tamer L, Ercan B, Bugdayci R, Atik U. The levels of serum vitamin C, malonyldialdehyde and erythrocyte reduced glutathione in chronic obstructive pulmonary disease and in healthy smokers. Clin Chem Lab Med. 2002;40:1028–31.

    Article  CAS  PubMed  Google Scholar 

  25. Prisco D, Rogasi PG, Matucci M, Abbate R, Gensini GF, Serneri GG. Increased thromboxane A2 generation and altered membrane fatty acid composition in platelets from patients with active angina pectoris. Thrombosis Res. 1986;44:101–12.

    Article  CAS  Google Scholar 

  26. Prisco D, Rogasi PG, Paniccia R, Abbate R, Gensini GF, Pinto S, et al. Altered membrane fatty acid composition and increased thromboxane A2 generation in platelets from patients with diabetes. Prostaglandins Leukot Essent Fatty Acids. 1989;35:15–23.

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan KL, Owen J. Plasma levels of beta-thromboglobulin and platelet factor 4 as indices of platelet activation in vivo. Blood. 1981;57:199–202.

    CAS  PubMed  Google Scholar 

  28. López-Revuelta A, Sánchez-Gallego JI, Hernández-Hernández A, Sánchez-Yagüe J, Llanillo M. Increase in vulnerability to oxidative damage in cholesterol-modified erythrocytes exposed to t-BuOOH. Biochim Biophys Acta. 2005;1734:74–85.

    Article  PubMed  Google Scholar 

  29. Rothman KJ. No adjustment are needed for multiple comparisons. Epimemiology. 1990;1:43–6.

    Article  CAS  Google Scholar 

  30. Perneger TV. What’s wrong with Bonferroni adjustments. Brit Med J. 1998;316:1236–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burgueño MJ, García-Bastos JL, González-Biutrago JL. Las curvas ROC en la evaluación de las pruebas diagnósticas. Med Clin (Barc). 1995;104:661–70.

    Google Scholar 

  32. DeBerardinis J, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148:1132–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Chen Y, Zhang R, Song Y, Cao J, Bi N, et al. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol Cell Proteomics. 2013;2:1306–18.

    Article  Google Scholar 

  34. Wen T, Gao L, Wen Z, Wu C, Tan CS, Toh WZ, et al. Exploratory investigation of plasma metabolomics in human lung adenocarcinoma. Mol Byosist. 2013;9:2370–8.

    Article  CAS  Google Scholar 

  35. Straface E, Rivabene R, Masella R, Santulli M, Paganelli R, Malorni W. Structural changes of the erythrocyte as a marker of non-insulin-dependent diabetes. Protective effects of N-acetylcysteine. Biochem Biophys Res Commun. 2002;290:1393–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bordin L, Donà G, Sabbadin C, Ragazzi E, Andrisani A, Ambrosini G, et al. Human red blood cells alterations in primary aldosteronism. J Clin Endocrinol Metab. 2013;98:2494–501.

    Article  CAS  PubMed  Google Scholar 

  37. Váli L, Hahn O, Kupcsulik P, Drahos A, Sárváry E, Szentmihályi K, et al. Oxidative stress with altered element content and decreased ATP level of erythrocytes in hepatocellular carcinoma and colorectal liver metastases. Eur J Gastroenterol Hepatol. 2008;20:393–8.

    Article  PubMed  Google Scholar 

  38. Harris RB, Foote JA, Hakim IA, Bronson DL, Alberts DS. Fatty acid composition of red blood cell membranes and risk of squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2005;14:906–12.

    Article  CAS  PubMed  Google Scholar 

  39. Khyshiktuev BS, Khyshiktueva NA, Ivanov VN, Darenskaia SD, Novikov SV. Fatty acid composition of blood plasma lipids and erythrocytes in lung cancer patients. Vopr Med Khim. 1994;40:48–50.

    CAS  PubMed  Google Scholar 

  40. Minetti M, Leto TL, Malorni W. Radical generation and alterations of erythrocyte integrity as bioindicators of diagnostic or prognostic value in COPD? Antioxid Redox Signal. 2008;10:829–36.

    Article  CAS  PubMed  Google Scholar 

  41. Das UN. Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J. 2006;1:420–39.

    Article  CAS  PubMed  Google Scholar 

  42. Calder PC. Long-chain fatty acids and inflammation. Proc Nutr Soc. 2012;71:284–9.

    Article  PubMed  Google Scholar 

  43. Sakai M, Kakutani S, Horikawa C, Tokuda H, Kawashima H, Shibata H, et al. Arachidonic acid and cancer risk: a systematic review of observational studies. BMC Cancer. 2012;12:606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D, et al. Lipoxigenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 2007;26:503–24.

    Article  CAS  PubMed  Google Scholar 

  45. Janssen LJ. The pulmonary biology of isoprostanes. Chem Phys Lipids. 2004;128:101–16.

    Article  CAS  PubMed  Google Scholar 

  46. Scaglia N, Igal RA. Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem. 2005;280:25339–49.

    Article  CAS  PubMed  Google Scholar 

  47. Cha D, Liu M, Zeng Z, Cheng D, Zhan G. Analysis of fatty acids in lung tissues using gas chromatography–mass spectrometry preceded by derivatization-solid-phase microextraction with a novel fiber. Anal Chim Acta. 2006;572:47–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish grants PI020081 and PI09/1075 [FEDER-FIS (Fondo de Investigaciones Sanitarias)], and SA 126A07, SA005A10-2, Biomedicina SA29/06 and BIO 103/SA39/11 (Junta de Castilla yLeón). P. Sánchez-Rodríguez is a student at the University of Salamanca School of Medicine, Spain.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Sánchez-Yagüe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Rodríguez, P., Rodríguez, M.C. & Sánchez-Yagüe, J. Identification of potential erythrocyte phospholipid fatty acid biomarkers of advanced lung adenocarcinoma, squamous cell lung carcinoma, and small cell lung cancer. Tumor Biol. 36, 5687–5698 (2015). https://doi.org/10.1007/s13277-015-3243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3243-3

Keywords

Navigation