Skip to main content

Advertisement

Log in

MiR-139-5p: promising biomarker for cancer

  • Review
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) were reported to be associated with cancer progression and carcinogenesis. MiRNAs are small, highly conserved, small non-coding RNA molecules, consisting of 18–25 nucleotides that control gene expression at the post-transcription level. By binding to complementary binding sites within the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs), inhibiting translation or promoting degradation of mRNAs. MicroRNAs not only play an important part in regulating gene expression but also controlling diverse physiological and pathological processes. Similarly, several studies have demonstrated that miRNAs have been involved in regulating various biological processes, including apoptosis, proliferation, cellular differentiation, metabolism, signal transduction, and carcinogenesis. MiRNA-139, which is located in 11q13.4 and has anti-oncogenic and antimetastatic activity in humans, meanwhile, was identified to be downregulated in previous studies. However, based on the pathogenetic relationship between cancer and the role of miR-139-5p in tumorigenesis, we consider that miR-139-5p may be the candidates to serve as promising biomarkers with sufficient sensitivity and specificity for the diagnosis of cancer in a clinical setting; moreover, it would offer a new safe and effective way in further molecular targeting cancer treatment, as well as improving overall survival of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19(12):1767–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chan LS, Yue PY, Wong YY, et al. MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol. 2013;86(3):392–400.

    Article  CAS  PubMed  Google Scholar 

  3. Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180(6):2490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One. 2012;7(4):e34210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang Z, Li Y, Huang K, et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao R, Wu J, Jia W, et al. Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie. 2011;34(12):675–80.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao G, Zhou X, Fang T, Hou Y, Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in granulosa cells. Biol Reprod. 2014;17.

  8. Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–31.

    Article  CAS  PubMed  Google Scholar 

  9. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.

    Article  CAS  PubMed  Google Scholar 

  10. Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J, et al. Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol (Dordr). 2014;37(3):215–27.

    Article  CAS  Google Scholar 

  11. Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S, et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  12. Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, et al. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012;167(4):847–55.

    Article  CAS  PubMed  Google Scholar 

  13. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69:1951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2010;101:241–9.

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Xie L, Qi B, Ma C, Sang L, Li H. Differential expression profiles of microRNAs/mRNA and docking study in oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi. 2014;32(4):400–3.

    PubMed  Google Scholar 

  16. Wong TS, Liu XB, Wong BY, et al. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.

    Article  CAS  PubMed  Google Scholar 

  17. Schepeler T, Holm A, Halvey P, Nordentoft I, Lamy P, Riising EM, et al. Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene. 2012;31(22):2750–60.

    Article  CAS  PubMed  Google Scholar 

  18. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  19. Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D, et al. Post-transcriptional regulation of the tumor suppressor miR-139-5p and a network of miR-139-5p-mediated mRNA interactions in colorectal cancer. FEBS J. 2014;281(16):3609–24.

    Article  CAS  PubMed  Google Scholar 

  20. Chrzanowska-Wodnicka M, Kraus AE, Gale D, Vansluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in RAP1B-deficient mice. Blood. 2008;111:2647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stork PJ. Does RAP1 deserve a bad RAP? Trends Biochem Sci. 2003;28:267–75.

    Article  CAS  PubMed  Google Scholar 

  22. Veenbergen S, van Spriel AB. Tetraspanins in the immune response against cancer. Immunol Lett. 2011;138:129–36.

    Article  CAS  PubMed  Google Scholar 

  23. Dietz KN, Miller PJ, Hollenbach AD. Phosphorylation of serine 205 by the protein kinase CK2 persists on Pax3-FOXO1, but not Pax3, throughout early myogenic differentiation. Biochemistry. 2009;48:11786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–25.

    Article  CAS  PubMed  Google Scholar 

  25. van der Vos KE, Coffer PJ. FOXO-binding partners: it takes two to tango. Oncogene. 2008;27:2289–99.

    Article  PubMed  Google Scholar 

  26. Jia AY, Castillo-Martin M, Domingo-Domenech J, Bonal DM, Sánchez-Carbayo M, Silva JM, et al. A common microRNA signature consisting of miR-133a, miR-139-3p, and miR-142-3p clusters bladder carcinoma in situ with normal umbrella cells. Am J Pathol. 2013;182(4):1171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, et al. Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One. 2013;8(10).

  28. Guo H, Hu X, Ge S, Qian G, Zhang J. Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol. 2012;44(9):1465–72.

    Article  CAS  PubMed  Google Scholar 

  29. Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84(3):320–30.

    Article  CAS  PubMed  Google Scholar 

  30. Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ. Tang JH, miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 2013;34(3):1361–70.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer. 2014;13:124.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, et al. MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther. 2013;19(7):477–83.

    Article  CAS  PubMed  Google Scholar 

  33. Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol. 2000;33:1–6.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng WL, Lin TY, Tseng YH, Chu FH, Chueh PJ, Kuo YH. Inhibitory effect of human breast cancer cell proliferation via p21-mediated G (1) cell cycle arrest by Araliadiol isolated from Aralia cordata Thunb. Planta Med. 2011;77:164–8.

    Article  CAS  PubMed  Google Scholar 

  35. Broude EV, Swift ME, Vivo C, Chang BD, Davis BM, Kalurupalle S, et al. P21(Waf1/Cip1/Sdi1) mediates retinoblastoma protein degradation. Oncogene. 2007;26:6954–8.

    Article  CAS  PubMed  Google Scholar 

  36. Mitrea DM, Yoon MK, Ou L, Kriwacki RW. Disorder-function relationships for the cell cycle regulatory proteins p21 and p27. Biol Chem. 2012;393:259–74.

    Article  CAS  PubMed  Google Scholar 

  37. Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell. 2004;15:499–509.

    Article  CAS  PubMed  Google Scholar 

  38. Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ. Canonical Wnt/betacatenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells. 2010;28:1794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang S, Lan F, Huang L, Dong L, Zhu Z, et al. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402. Biochem Biophys Res Commun. 2005;333:917–24.

    Article  CAS  PubMed  Google Scholar 

  40. Selivanova G. p53: fighting cancer. Curr Cancer Drug Targets. 2004;4:385–402.

    Article  CAS  PubMed  Google Scholar 

  41. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis. 2010;31:1501–8.

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, et al. Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res. 2004;6:R24–30.

    Article  CAS  PubMed  Google Scholar 

  43. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, et al. HER2 interacts with CD44 to upregulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141(6):2076–87.

    Article  CAS  PubMed  Google Scholar 

  44. Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Pure E, et al. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol. 2007;176:535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mansouri MR, Schuster J, Badhai J, Stattin EL, Losel R, Wehling M, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17:3776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009;121:14–9.

    Article  CAS  PubMed  Google Scholar 

  48. Peluso JJ, Pappalardo A, Losel R, Wehling M. Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action. Endocrinology. 2006;147:3133–40.

    Article  CAS  PubMed  Google Scholar 

  49. Schuster J, Karlsson T, Karlstrom PO, Poromaa IS, Dahl N. Down-regulation of progesterone receptor membrane component 1 (PGRMC1) in peripheral nucleated blood cells associated with premature ovarian failure (POF) and polycystic ovary syndrome (PCOS). Reprod Biol Endocrinol. 2010;8:58.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Peluso JJ, Pappalardo A, Fernandez G, Wu CA. Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells. Endocrinology. 2004;145:3014–22.

    Article  CAS  PubMed  Google Scholar 

  51. Peluso JJ, Pappalardo A, Losel R, Wehling M. Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability. Biol Reprod. 2005;73:261–70.

    Article  CAS  PubMed  Google Scholar 

  52. Peluso JJ, Yuan A, Liu X, Lodde V. Plasminogen activator inhibitor 1 RNA-binding protein interacts with progesterone receptor membrane component 1 to regulate progesterone's ability to maintain the viability of spontaneously immortalized granulosa cells and rat granulosa cells. Biol Reprod. 2013;88:20.

    Article  PubMed  Google Scholar 

  53. Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, et al. miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn. 2013;15(5):695–705.

    Article  CAS  PubMed  Google Scholar 

  54. Oda S, Nakajima M, Toyoda Y, Fukami T, Yokoi T. Progesterone receptor membrane component 1 modulates human cytochrome p450 activities in an isoform-dependent manner. Drug Metab Dispos. 2011;39:2057–65.

    Article  CAS  PubMed  Google Scholar 

  55. Szczesna-Skorupa E, Kemper B. Progesterone receptor membrane component 1 inhibits the activity of drug-metabolizing cytochromes P450 and binds to cytochrome P450 reductase. Mol Pharmacol. 2011;79:340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watanabe K, Sunohara M, Amano Y, Ishikawa R, Ichinose J, Nakajima J, et al. Histone methylationmediated silencing of mir-139 enhances an aggressive phenotype of non-small cell lung cancer. Clin Cancer Res. 2014;20:B28.

    Article  Google Scholar 

  57. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56:622–31.

    Article  CAS  PubMed  Google Scholar 

  58. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes. 2009;265–77.

  59. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, et al. Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol. 2000;10:551–4.

    Article  CAS  PubMed  Google Scholar 

  61. Bundy LM, Sealy L. CCAAT/enhancer binding protein beta (C/EBPβ)-2 transforms normalmammary epithelial cells and induces epithelial tomesenchymal transition in culture. Oncogene. 2003;22:869–83.

    Article  CAS  PubMed  Google Scholar 

  62. Kim J, Shao Y, Kim SY, Kim S, Song HK, Jeon JH, et al. Hypoxia-induced IL-18 increases hypoxia- inducible factor-1α expression through a Rac1-dependent NF-κB pathway. Mol Biol Cell. 2008;19:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71:3980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93:E44–52.

    PubMed  Google Scholar 

  65. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582:2093–101.

    Article  CAS  PubMed  Google Scholar 

  66. Makrodouli E, Oikonomou E, Koc M, Andera L, Sasazuki T, Shirasawa S, et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: A comparative study. Mol Cancer. 2011;10:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a Gprotein- dependent manner. Curr Biol. 1999;9:695–8.

    Article  CAS  PubMed  Google Scholar 

  68. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117:4619–28.

    Article  CAS  PubMed  Google Scholar 

  69. Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One. 2010;5:e15940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F. Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J Biol Chem. 2001;276:42908–14.

    Article  CAS  PubMed  Google Scholar 

  71. Lee CH, Kuo WH, Lin CC, Oyang YJ, Huang HC, Juan HF. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int J Mol Sci. 2013;14(6):11560–606.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Buck MB, Knabbe C. TGF-β signaling in breast cancer. Ann N Y Acad Sci. 2006;1089:119–26.

    Article  CAS  PubMed  Google Scholar 

  73. Zavadil J, Bottinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.

    Article  CAS  PubMed  Google Scholar 

  74. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Romashkova JA, Makarov SS. NF-κB is a target of AKT in antiapoptotic PDGF signalling. Nature. 1999;401:86–90.

    Article  CAS  PubMed  Google Scholar 

  76. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.

    Article  CAS  PubMed  Google Scholar 

  77. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23:101–17.

    Article  CAS  PubMed  Google Scholar 

  78. Sawey ET, Johnson JA, Crawford HC. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A. 2007;104:19327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, et al. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014;63:622–34.

    Article  CAS  PubMed  Google Scholar 

  80. Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, et al. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994;54:4805–12.

    CAS  PubMed  Google Scholar 

  81. Yamamoto H, Itoh F, Hinoda Y, Imai K. Suppression of matrilysin inhibits colon cancer cell invasion in vitro. Int J Cancer. 1995;61:218–22.

    Article  CAS  PubMed  Google Scholar 

  82. van Kempen LC, Coussens LM. MMP9 potentiates pulmonary metastasis formation. Cancer Cell. 2002;2:251–2.

    Article  PubMed  Google Scholar 

  83. Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995;270:17656–9.

    Article  CAS  PubMed  Google Scholar 

  84. Vega F, Medeiros LJ, Leventaki V, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 2006;66:6589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Araki T, Hayashi M, Watanabe N, et al. Down-regulation of Mcl-1 by inhibition of the PI3-K/Akt pathway is required for cell shrinkage-dependent cell death. Biochem Biophys Res Commun. 2002;290:1275–81.

    Article  CAS  PubMed  Google Scholar 

  86. Kim B, Nam HJ, Pyo KE, Jang MJ, Kim IS, Kim D, et al. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex. Biochem Biophys Res Commun. 2011;415:720–6.

    Article  CAS  PubMed  Google Scholar 

  87. Cronan MR, Nakamura K, Johnson NL, Granger DA, Cuevas BD, Wang JG, et al. Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene. 2011;31:3889–900.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ramsay AK, McCracken SR, Soofi M, Fleming J, Yu AX, Ahmad I, et al. ERK5 signalling in prostate cancer promotes an invasive phenotype. Br J Cancer. 2011;104:664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lau KS, Dennis JW. N-Glycans in cancer progression. Glycobiology. 2008;18:750–60.

    Article  CAS  PubMed  Google Scholar 

  90. Moutsatsou P, Papavassiliou AG. The glucocorticoid receptor signaling in breast cancer. J Cell Mol Med. 2008;12:145–63.

    Article  CAS  PubMed  Google Scholar 

  91. Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68:346–51.

    Article  CAS  PubMed  Google Scholar 

  92. Aust S, Obrist P, Klimpfinger M, Tucek G, Jager W, Thalhammer T. Altered expression of the hormone and xenobiotic-metabolizing sulfotransferase enzymes 1A2 and 1C1 in malignant breast tissue. Int J Oncol. 2005;26:1079–85.

    CAS  PubMed  Google Scholar 

  93. Naushad SM, Reddy CA, Rupasree Y, Pavani A, Digumarti RR, Gottumukkala SR, et al. Cross-talk between one-carbon metabolism and xenobiotic metabolism: Implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys. 2011;61:715–23.

    Article  CAS  PubMed  Google Scholar 

  94. Previdi S, Maroni P, Matteucci E, Broggini M, Bendinelli P, Desiderio MA. Interaction between human breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and bcatenin/Wnt pathways. Eur J Cancer. 2010;46:1679–91.

    Article  CAS  PubMed  Google Scholar 

  95. Smirnova T, Zhou ZN, Flinn RJ, Wyckoff J, Boimel PJ, Pozzuto M, et al. Phosphoinositide 3-kinase signaling is critical for ErbB3- driven breast cancer cell motility and metastasis. Oncogene. 2012;31:706–15.

    Article  CAS  PubMed  Google Scholar 

  96. Song M, Yin Y, Zhang J, Zhang B, Bian Z, Quan C, et al. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell. 2014;5:851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67:11612–20.

    Article  CAS  PubMed  Google Scholar 

  99. Hasseine LK, Hinault C, Lebrun P, et al. miR-139 impacts FoxO1 action by decreasing FoxO1 protein in mouse hepatocytes. Biochem Biophys Res Commun. 2009;390:1278–82.

    Article  CAS  PubMed  Google Scholar 

  100. Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G. Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes. 2012;5:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sandy L, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56(2):622–31.

  102. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.

    Article  CAS  PubMed  Google Scholar 

  103. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19(12):1767–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fan Q, He M, Deng X, Wu WK, Zhao L, Tang J, et al. Derepression of c-Fos caused by microRNA-139 down-regulation contributes to the metastasis of human hepatocellular carcinoma. Cell Biochem Funct. 2012;31:319–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (81272470).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-hai Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hd., Jiang, Lh., Sun, Dw. et al. MiR-139-5p: promising biomarker for cancer. Tumor Biol. 36, 1355–1365 (2015). https://doi.org/10.1007/s13277-015-3199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3199-3

Keywords

Navigation